типы и классификация холодильных компрессоров
Работа бытового и промышленного холодильного оборудования напрямую зависит от циркуляции хладагента, отвечает за этот процесс компрессорная установка. По сути, это самый важный элемент конструкции, без которого домашний холодильник заинтересует только приемщиков вторсырья. Чтобы произвести ремонт этого устройства или произвести замену, важно понимать принцип его работы. В данной публикации мы расскажем о внутреннем устройстве различных компрессоров бытовых холодильников и их особенностях.
Кратко о типах оборудования
По принципу работы данное оборудование можно разделить на четыре вида:
- Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
- Абсорбционное, для работы использует не электрическую, а тепловую энергию.
- Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
- Компрессорное.
Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.
Компрессор для холодильника: принцип работы
Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.
Рис. 1. Принцип работы холодильной установкиОбозначения:
- А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
- B – Компрессорный аппарат.
- С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
- D – Капиллярная трубка, служит для выравнивания давления.
Теперь рассмотрим, алгоритм работы системы:
- При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
- Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
- Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.
Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.
Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.
Классификация компрессоров в холодильном оборудовании
Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:
- Динамический. В таких устройствах циркуляция хладагента производится под воздействием вентилятора. В зависимости от конструкции последнего их принято разделять на осевые и центробежные. Первые устанавливаются внутрь системы, и в процессе работы нагнетают давление. Их принцип работы такой же, как у обычного вентилятора. Осевой компрессор
У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.
Центробежный компрессор в разрезеОсновной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.
- Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
- Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.
Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.
Устройство поршневого компрессора холодильника
Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.
Внешний вид поршневого компрессора со снятым верхним кожухомПри включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение. В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор.
Обозначения:
- Нижняя часть металлического кожуха.
- Крепление статора электромотора.
- Статор двигателя.
- Корпус внутреннего электромотора.
- Крепеж цилиндра.
- Крышка цилиндра.
- Плита крепления клапана.
- Корпус цилиндра.
- Поршневой элемент.
- Вал с кривошипной шейкой.
- Кулиса.
- Ползунок кулисного механизма.
- Завитая в спираль медная трубка для нагнетания хладагента.
- Верхняя часть герметичного кожуха.
- Вал.
- Крепление подвески.
- Пружина.
- Кронштейн подвески.
- Подшипники, установленные на вал.
- Якорь электродвигателя.
В зависимости от конструкции поршневой системы данные устройства делятся на два типа:
- Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
- Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).
В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.
Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.
Устройство роторных механизмов
Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.
Внешний вид двухшнекового (ротационного) компрессораВнутри компрессора фреон, попадая в сжимающийся «карман» выталкивается в отверстие небольшого диаметра, чем создается необходимое давление. Несмотря на относительно небольшую скорость вращения роторов, создается необходимый коэффициент сжатия. Отличительные особенности: небольшая мощность, низкий уровень шума. Основные элементы конструкции механизма представлены ниже.
Конструкция линейного роторного компрессора в виде схемыОбозначения:
- Отводной патрубок.
- Отделитель масла.
- Герметичный кожух.
- Фиксируемый на кожухе статор.
- Обозначение внутреннего диаметра кожуха.
- Обозначение диаметра якоря.
- Якорь.
- Вал.
- Втулка.
- Лопасти.
- Подшипник на валу якоря.
- Крышка статора.
- Вводная трубка с клапаном.
- Камера-аккумулятор.
Устройство инверторного компрессора холодильника
По сути, это не отдельный вид, а особенность работы. Как уже рассматривалось выше, мотор установки отключается при достижении пороговой температуры. Когда она поднимается выше установленного предела, производится подключение двигателя на полной мощности. Такой режим запуска приводит к снижению ресурса электромеханизма.
Возможность избавиться от такого недостатка появилась с внедрением инверторных установок. В таких системах двигатель постоянно находится во включенном состоянии, но при достижении нужной температуры снижается его скорость вращения. В результате хладагент продолжает циркулировать в системе, но значительно медленней. Этого вполне достаточно для поддержки температуры на заданном уровне. При таком режиме работы продлевается срок службы и меньше потребляется электроэнергии. Что касается остальных характеристик, то они остаются неизменными.
Рекомендуем изучить:
- Ремонт холодильника daewoo своими руками
- Клапан электромагнитный соленоидный нормально закрытый
- Ремонт кондиционера самсунг своими руками
принцип работы холодильника, устройство холодильника, как работает холодильник
Холодильный агрегат работает следующим образом.
Мотор-компрессор откачивает пары фреона из испарителя и нагнетает их в конденсатор. В конденсаторе пары фреона охлаждаются и конденсируются. Далее жидкий фреон через фильтр-осушитель и капиллярный трубопровод попадает в испаритель. Гидравлическое сопротивление капиллярного трубопровода подбирается таким образом, чтобы создать определенную разность давления всасывания и конденсации, которое создает компрессор, при которой через трубопровод проходило определенное количество жидкости. Каждый капилляр соответствует определенному мотор-компрессору. На входе фреона в испаритель, давление падает от давления конденсации до давления кипения. Этот процесс называется дросселированием. При этом происходит вскипание фреона, поступая в каналы испарителя фреон кипит, энергия необходимая для кипения в виде тепловой, забирается от поверхности испарителя, охлаждая воздух в холодильнике. Пройдя через испаритель жидкий фреон превращается в пар, который откачивается компрессором. Количество отводимой холодильной машиной теплоты, приходящейся на единицу затраченной электрической энергии называется холодильным коэффициентом холодильника.1 — конденсатор, 2 — капиллярная трубка, 3 — мотор-компрессор,
4 — испаритель, 5 — фильтр-осушитель, 6 — обратная трубка
Мотор-компрессор — основной узел любого холодильного агрегата. Назначение компрессора состоит в обеспечении циркуляции охлаждающего вещества (фреона) по системе трубопроводов холодильного агрегата. Холодильник может быть укомплектован как одним, так и двумя компрессорами. В состав мотор-компрессора входит электромотор и компрессор. Двигатель преобразовывает электрическую энергию в механическую, что приводит в действие компрессор В устройстве бытовых холодильников используются герметичные поршневые мотор-компрессоры, конструкция предполагает расположение электродвигателя во внутренней части корпуса компрессора. Такое расположение электродвигателя предотвращает возможность утечки хладагента сквозь уплотнение вала. Тем самым уменьшая возможность дальнейшего ремонта холодильника. С целью поглощения вибраций, возникающих во время работы, используется подвеска компрессора. Подвеска, в свою очередь, бывает внутренней (двигатель компрессора подвешивается внутри корпуса) и внешней (корпус компрессора подвешивается на пружине). В современных моделях бытовых холодильников в основном используется внутренняя подвеска, так как она значительно эффективнее способна поглощать вибрации компрессора, чем наружная. Смазывают компрессор специальными рефрижераторными маслами, способными хорошо взаимодействовать с хладагентом
Конденсатор — теплообменный аппарат для отвода тепла от конденсирующихся (превращающихся в жидкость) паров фреона к окружающей среде. Это обусловлено предварительным повышением давления паров в компрессоре и отводом от ник тепла в конденсаторе. На холодильниках с естественным охлаждением конденсатор в виде змеевика или щита устанавливают на задней стенке (снаружи или внутри). Холодильники больших размеров обычно оснащены конденсаторами, имеющими вид радиаторов, их устанавливают рядом с компрессором, внизу. Вентилятор обеспечивает их нормальное охлаждение. Конденсатор обязательно должен хорошо охлаждаться – это залог нормальной работы холодильника.
Испаритель – теплообменный аппарат для охлаждения непосредственно продукта в результате кипения в нем жидкого фреона. Кипение в испарителе при низкой температуре и соответствующем давлении происходит за счет теплоты, отнимаемой от охлаждающей среды.
Капиллярная трубка – предназначена для дросселирования перед испарителем жидкого фреона и снижения его давления от давления конденсации до давления кипения с соответствующим понижением давления. Представляет собой медный трубопровод длиной 1.5 – 3м с внутренним диаметром 0.6 – 0.85 мм. Устанавливается между конденсатором и испарителем
Фильтр-осушитель — устанавливается у входа в капиллярную трубку для предохранения ее от засорения твердыми частицами, для поглощения влаги из фреона и предотвращения замерзания ее на выходе из капиллярной трубки. Корпус патрона фильтра состоит из медной трубки длиной 105-140 мм и диаметром 18..12 мм с вытянутыми концами, в отверстия которых впаивают соответственно трубопровод конденсатора и капилляр. В корпус фильтра помещают цеолит между молекулярными сетками, установленными на входе и выходе из патрона.
Докипатель — представляет из себя емкость, установленную между испарителем и всасывающим патрубком компрессора. Предназначен для докипания жидкого фреона и предотвращения попадания его в компрессор, что может привести к выходу из строя компрессора. Размещают докипатель в охлаждаемом объеме — как правило в морозильной камере. Докипатель может быть алюминиевым или медным.
Работу бытового холодильника обеспечивает электрическая схема.
1 — терморегулятор, 2 — кнопка принудительной оттайки, 3 — реле тепловой защиты, 3. 1. — контакты реле, 3.2. — биметаллическая пластина, 4 — электродвигатель мотор-компрессора, 4.1. — рабочая обмотка, 4.2. — пусковая обмотка, 5 — пусковое реле, 5.1. — контакты реле, 5.2. — катушка реле
При подаче напряжения в схему электрический ток проходит: через замкнутые контакты терморегулятора 1, копки принудительной оттайки 2, реле тепловой защиты 3, (контакт 3.1, биметаллическая пластина 3.2), пусковое реле 5 (катушку 5.2, контакты 5.1 разомкнуты) и рабочую обмотку 4.1 электродвигателя мотор-компрессора 4. Поскольку двигатель не вращается, ток, протекающий через его рабочую обмотку, в несколько раз превышает номинальный. Пусковое реле 5 устроено таким образом, что при превышении номинального значения тока замыкаются контакты 5.1, подключая к цепи пусковую обмотку электродвигателя, который начинает вращаться, в результате чего, ток в рабочей обмотке снижается, контакты пускового реле размыкаются, но двигатель продолжает работать в нормальном режиме за счет рабочей обмотки. При достижении заданной температуры, контакты терморегулятора размыкаются и электродвигатель компрессора останавливается. Для отключения электродвигателя при опасном повышении силы тока предназначено реле тепловой защиты. С одной стороны оно защищает электродвигатель от перегрева и поломки, а с другой от пожара. Реле состоит из биметаллическое пластины 3.2., которая при опасном повышении силы тока нагревается и, изгибаясь, размыкает контакты 3.1. После остывания биметаллической пластины контакты снова замыкаются.
Ремонт бытовых холодильников
услуга, которые по приемлемой цене оказывает
компания Доктор холод заказчикам в Тольятти.
При оформлении заказа гарантированы:
- Выполнение работы квалифицированным мастером
- Использование оригинальных запчастей
- Выезд на место в удобное для заказчика время
- Вызов мастера по ремонту холодильников в Тольятти и
- диагностика бесплатно
- Ремонт холодильников в районах Тольятти :
- Автозаводский, Центральный, Комсомольский
- Гарантия на ремонт холодильника до 12 месяцев
- Срочный ремонт холодильников в день звонка
- Недорогой ремонт холодильников по приемлемой цене
- Бесплатная консультация по телефону. ,
- ответим на ваши вопросы по ремонту и обслуживанию холодильников
- Удобный график работы,
- ремонт холодильников без праздников и выходных
- Мобильная мастерская по ремонту холодильников
- Ремонт холодильников на дому
- Профессиональное оборудование для ремонта холодильника
- Весь спектр по капитальному и линейному ремонту холодильников
РЕМОНТ ХОЛОДИЛЬНИКА СВОИМИ РУКАМИ Сделать самому можно следующее -поменять терморегулятор холодильника. Для этого понадобится отвертка и мультиметр. Признаки дефекта терморегулятора : холодильный прибор не работает, компрессор не запускается, при повороте ручки терморегулятора в по часовой стрелке ситуация не меняется или при установке
Основы компрессорного охлаждения
Пытаясь понять, как работает система охлаждения на основе компрессора, вы должны помнить о трех физических явлениях:
Когда газ сжимается, его температура увеличивается. И наоборот, когда он расширяется, его температура падает. Это одно из ответвлений первого закона термодинамики.
Температура чистой жидкости остается постоянной при ее кипении или конденсации. Если вы измерите температуру воды при ее кипении, температура останется постоянной на уровне 212°F или 100°C, пока присутствует жидкая вода. Когда газы конденсируются, температура системы остается постоянной до тех пор, пока весь газ не превратится в жидкость.
Для фазового перехода жидкости требуется значительное количество энергии. Чтобы полностью вскипятить заданное количество воды, требуется больше энергии, чем для того, чтобы довести такое же количество воды до температуры от 32°F до 211°F. Это означает, что значительное количество энергии может быть сохранено, а затем высвобождено только во время фазового перехода.
Цикл охлаждения
Цикл охлаждения является непрерывным процессом. Хладагент движется от компрессора к конденсатору, через дозирующее устройство к испарителю, а затем цикл повторяется (см. рис. 1).
Компрессор получает газ низкого давления из испарителя и преобразует его в газ высокого давления путем сжатия, как следует из названия. При сжатии газа температура повышается.
Затем горячий газообразный хладагент поступает в конденсатор. Конденсатор представляет собой теплообменник, в котором для охлаждения хладагента используется более холодная жидкость, обычно воздух из окружающей среды. Когда хладагент проходит через этот теплообменник, он конденсируется в горячую жидкость. Жидкий хладагент выходит из конденсатора и поступает к дозирующему устройству системы.
Измерительное устройство может представлять собой расширительный клапан или капиллярную трубку и используется для создания перепада давления. Как упоминалось ранее, температура и точка кипения жидкостей уменьшаются при уменьшении давления. Некоторое количество жидкого хладагента испаряется, и температура газожидкостной смеси падает. Затем холодный хладагент поступает в испаритель.
Испаритель — это еще один теплообменник, который позволяет теплу перемещаться между источником тепла и хладагентом. В чиллере источником тепла является охлаждающая жидкость, которая поступает в ваше оборудование. Хладагент поступает в испаритель в виде низкотемпературной газожидкостной смеси. По конструкции температура источника тепла всегда выше точки кипения хладагента. В испарителе хладагент испаряется, поглощая тепло от источника тепла. При испарении температура хладагента остается постоянной. Затем хладагент выходит из испарителя в виде газа, поступает в компрессор, и цикл начинается снова.
Есть вопросы? Мы готовы помочь!
- О Бойде |
- Свяжитесь с нами |
- Карьера |
- Карта сайта |
- Доступность веб-сайта |
- Справочный центр |
- Найти номер детали
- Глобальная политика конфиденциальности |
- Германия Политика конфиденциальности |
- Положения и условия |
- Условия продажи
- Copyright © 2022 Boyd. Все права защищены.
Принцип работы холодильного компрессора
Компрессор является сердцем холодильной системы. Компрессор действует как насос, который перемещает хладагент по системе. Датчики температуры запускают работу компрессора. Холодильные системы охлаждают объекты посредством повторяющихся циклов охлаждения.
Прежде чем мы продолжим, вот несколько терминов, которые вы должны знать.
1. Компрессор: Компрессор — это насос, обеспечивающий подачу хладагента. Компрессор работает за счет увеличения давления и температуры испаряемого хладагента. Существуют различные типы компрессоров для холодильных установок. Среди холодильных установок наиболее распространены поршневые, роторные и центробежные компрессоры.
2. Конденсатор: Конденсатор представляет собой набор спиральных трубок. В бытовом холодильнике компрессор находится сзади прибора. Конденсатор охлаждает испарившийся хладагент, превращая его обратно в жидкость.
3. Испаритель: Испаритель является охлаждающим компонентом холодильной системы. Он поглощает тепло содержимого охлаждающего устройства. В бытовом холодильнике испаритель находится в морозильной камере.
4. Расширительный клапан: Это устройство регулирует поток жидкого хладагента. Расширительный клапан термостатический. Он реагирует на температуру, которую вы устанавливаете.
Цикл охлаждения
Хладагент течет из змеевика испарителя через компрессор. Этот поток повышает давление теплоносителя. Затем испарившийся хладагент поступает в конденсатор, где превращается в жидкость. Когда хладагент конденсируется в жидкость, он выделяет тепло. Это объясняет, почему конденсатор относительно горячий, когда вы к нему прикасаетесь.
Из конденсатора хладагент поступает к расширительному клапану. Падение давления в расширительном клапане. От расширительного клапана хладагент поступает в испаритель. Жидкий хладагент забирает тепло из окружающей среды испарителя. Это тепло испаряет жидкий хладагент.
Испаренный хладагент возвращается в компрессор, где цикл продолжается.
Принцип работы различных компрессоров
1. Поршневой компрессор
Этот компрессор использует возвратно-поступательное движение поршня для сжатия испаряемого хладагента. Другое название поршневого компрессора – поршневой компрессор. Этот компрессор состоит из двигателя, коленчатого вала и нескольких поршней.
Двигатель вращает коленчатый вал, который затем толкает поршни.
При каждом вращении коленчатого вала выполняются действия: всасывание, сжатие и нагнетание. Все эти действия выполняются последовательно. В результате вытеснение газа носит прерывистый характер и вызывает вибрацию.
Поршневые компрессоры одностороннего действия — это компрессоры, в которых хладагент действует с одной стороны. В компрессорах двойного действия хладагент действует с двух сторон поршня.
Типы компрессоров одностороннего действия включают;
- Компрессоры открытого типа
- Обслуживаемые полугерметичные компрессоры
- Обслуживаемые полугерметичные компрессоры с болтовым креплением
- Сварные герметичные компрессоры
Эти поршневые компрессоры бывают с низкой, средней и высокой рабочей температурой. Вы найдете поршневые компрессоры в бытовых холодильниках и морозильных камерах (сварные герметичные компрессоры). В коммерческих холодильных установках и системах кондиционирования воздуха используются как полугерметичные, так и сварные герметичные компрессоры.
2. Ротационно-пластинчатый компрессор
Лопасти делят цилиндр на всасывающую и нагнетательную секции. Поршни вращаются для увеличения и уменьшения объемов секций. Непрерывное вращение обеспечивает всасывание, сжатие и выпуск газа.
Работа пластинчато-роторного компрессора включает пять действий. Эти действия; начало, всасывание, сжатие, нагнетание, затем конец. Каждое вращение коленчатого вала выполняет все эти пять действий.
Роторно-пластинчатые компрессоры можно найти в бытовых холодильных установках и кондиционерах. Они также используются в тепловых насосах.
3. Винтовой компрессор
В этом компрессоре используются винтовые роторы для сжатия больших объемов хладагента. Сжатие включает в себя двигатель и роторы с наружной и внутренней резьбой.
Двигатель вращает охватываемый ротор через коленчатый вал. Охватываемый ротор перемещает охватывающий ротор по мере того, как роторы входят в зацепление друг с другом.
Зацепляющиеся роторы нагнетают хладагент через всасывающий патрубок компрессора. Сжатый хладагент выходит через выпускной патрубок под более высоким давлением.
Винтовой компрессор конкурирует с большими поршневыми и малыми центробежными компрессорами. Вы найдете винтовые компрессоры в коммерческих и промышленных системах охлаждения и кондиционирования воздуха.
4. Центробежный компрессор
Другое название центробежного компрессора — турбо или радиальный компрессор. Эта машина сжимает хладагент за счет кинетической энергии вращающихся крыльчаток. Когда рабочие колеса вращаются, они нагнетают хладагент через входную лопасть. Чем выше скорость рабочего колеса, тем выше давление.
Затем хладагент высокого давления проходит через диффузор. В диффузоре объем газа хладагента расширяется по мере уменьшения скорости.