Трёхфазный бесколлекторный двигатель BLDC


1. Двигатель стиральной машины с прямым приводом

Пожалуй уже каждый слышал о стиральных машинах с прямым приводом барабана. Но до сих пор, даже не все специалисты по ремонту стиральных машин знают как устроен и как работает двигатель в такой машине.

Сама идея конечно не новая, ведь за основу взят шаговый двигатель, который уже давно получил распространение во многих электротехнических устройствах. А вот первое применение его в конструкции стиральной машины в качестве привода барабана, принадлежит корейскому концерну LG. С середины 2005 года, компания LG начала активно продвигать свою продукцию, заявляя о 10-ти летней гарантии на двигатель для стиральных машин с прямым приводом.

Сегодня, помимо LG, компании Samsung, Haier и Whirpool в ряде моделей стиральных машин стали применять подобные двигатели. Забегая вперёд, можно сказать, что компания LG не просчиталась и двигатель для прямого привода барабана действительно довольно надёжный и имеет преимущество по сравнению с более традиционным и распространённым коллекторным двигателем.

2. Устройство двигателя

Двигатель стиральной машины с прямым приводом, представляет собой трёхфазный бесколлекторный двигатель постоянного тока, отчасти похожий на шаговый двигатель, но это не совсем так. В иностранной литературе его ещё часто называют BLDC (Brushless Direct Current Motor — бесщёточный мотор постоянного тока), для удобства мы тоже будем применять эту аббревиатуру.

Такой двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Различают два вида подобных двигателей:

Inrunner, у которых магниты ротора находятся внутри статора с обмотками, и Outrunner, у которых магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками. В стиральных машинах с прямым приводом применяется Outrunner тип двигателя.

В этой статье мы ознакомим с устройством двигателя от стиральной машины LG.

3. Ротор

Рис.2 Ротор двигателя стиральной машины LG с прямым приводом

Ротор BLDC — вращающаяся часть двигателя (Рис. 2) По форме напоминает чашу, к внутренней стороне которой специальным клеем крепятся магниты прямоугольной формы. Магниты всегда имеют чётное количество и установлены с чередованием полюсов. В нашем случае установлено 12 магнитов, размер которых зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. В центре ротора есть специальное посадочное отверстие с насечками, что позволяет, при помощи болта или гайки, закрепить ротор напрямую к валу барабана. С внешней стороны ротора, продавлено 10 щелей образующих на обратной его стороне небольшие лопасти для охлаждения обмоток статора.

4. Статор

Рис.3 Статор двигателя стиральной машины LG с прямым приводом

Статор BLDC — неподвижная часть двигателя и крепится к задней части бака стиральной машины (Рис.3) Статор состоит из нескольких листов магнитопроводящей стали заключённый в пластиковый каркас, который служит изолятором. В целом, каркас статора напоминает круг с прямоугольными зубьями. На каждый зуб статора наматывается катушка.

Обмотка трёхфазного бесколлекторного двигателя изготовлена из медной проволоки толщиной 1 мм. Классическая обмотка выполняется одним проводом для одной фазы, то есть все обмотки на зубьях одной фазы соединены последовательно. В данном случае статор имеет 36 зубьев — это значит по 12 зубьев на одну фазу. Сопротивление обмотки каждой фазы порядка 10 Ом.
Как известно, в трёхфазных двигателях, обмотки соединяют по схеме звезда или треугольник.

В нашем случае, обмотки статора соединены по схеме звезда, т.е. концы фаз имеют общую точку (Рис.4)

Поскольку в каждый момент времени работают только две фазы (при включении звездой), магнитные силы воздействуют на ротор неравномерно по всей окружности (Рис.5).

Силы, воздействующие на ротор, стараются его перекосить, что приводит к увеличению вибраций. Для устранения этого эффекта статор делают с большим количеством зубьев, а обмотку распределяют по зубьям всей окружности статора как можно равномернее (Рис. 6)

Рис.4 Соединение обмоток по схеме «звезда»

Рис.5 Воздействие магнитных сил на ротор

Рис.6 Распределение магнитных сил в обмотке с несколькими зубьями

В двигателе стиральной машины LG, распределение фазных обмоток, а также относительное положение ротора и статора можно увидеть ниже (см. Рис.7). На схеме производителя, фазные обмотки обозначают буквами : V, W, U

Рис.7 Трёхфазный двигатель постоянного тока (BLDC) стиральной машины LG (общий вид)

Для контроля положения ротора применяется датчик работающий на эффекте Холла. Датчик реагирует на магнитное поле и поэтому его располагают на статоре таким образом, чтобы магниты ротора воздействовали на него.

5. Система управления трёхфазным двигателем (BLDC)

Стоит отметить, что система управления двигателем BLDC и схема её реализации аналогична схеме управления трёхфазным асинхронным двигателем описанной в другой нашей статье. Что бы в точности не повторяться, поясним всё же немного по другому.

Управление двигателем с прямым приводом построено на инверторе напряжения с широтно-импульсной модуляцией. Инвертор — (от лат. inverto — поворачивать, переворачивать) — элемент вычислительной схемы, осуществляющий определённые преобразования сигнала изменяемой амплитуды и частоты. К примеру, в инверторе, сетевое напряжение 220 вольт с частотой 50 Гц, преобразуется в постоянное напряжение, а параметры питания обмоток статора двигателя могут колебаться от 0 до 120 вольт с частотой до 300 Гц.

Двигатель постоянного тока имеет три вывода (т.е. три фазы), на которые в разный момент времени подаётся «+» и «-» питания. Это реализуется при помощи IGBT (биполярных транзисторов с изолированным затвором) представляющие электронные силовые ключи, включённые по мостовой схеме (Рис.8)

Рис.8 Условная схема силовой части инвертора и обмоток двигателя подключённых по схеме «звезда»

Замыкая ключ SW1 подаётся «+» на фазу V, а замыкая SW6 подаётся «-» на фазу U. Таким образом, ток потечет от «+» выпрямителя через фазы V и U. Для обеспечения обратного направления, открывается SW5 и SW2. В этом случае ток потечет от «+» выпрямителя через фазы U и V в обратном направлении. При работе двигателя одновременно должен быть открыт только один верхний и один нижний ключ.

При включении ключей, как показано выше, на двигатель подается полное напряжение питания. При этом двигатель развивает максимальные обороты (мощность). Чтобы обеспечить управление двигателем, нужно регулировать напряжение питания двигателя. Изменение действующего напряжения осуществляется с помощью широтно-импульсной модуляции (ШИМ).

Дадим определение этим терминам:
Широтно-импульсная модуляция (ШИМ) — это управление средним значением напряжения на нагрузке путём изменения скважности импульсов, управляющих ключом. А скважность — это отношение периода следования (повторения) сигнала к длительности (широте) его импульса.

На (Рис.9) представлен график, иллюстрирующий применение трёхуровневой ШИМ для управления электродвигателем, которая используется в приводах асинхронных электродвигателей с переменной частотой. Напряжение от ШИ-модулятора, подаваемое на обмотку двигателя показано в виде прямоугольных импульсов. Пунктирной линией грубо изображён магнитный поток в статоре двигателя. Магнитный поток имеет приблизительно синусоидальную форму, благодаря соответствующему закону ШИМ.

Поэтому, ключи открыты не все время, а открываются, и закрываются с фиксированной частой, но изменяемой скважностью. Таким образом, изменяется действующее напряжение от нулевого до напряжения питания.

Назревает вопрос: зачем нужно менять скважность, зачем эта частота и для чего это всё нужно? Дело в том, что слишком малая частота может быть не эффективной или не обеспечивать необходимой плавности регулирования оборотов двигателя.

Рис.9 График иллюстрирующий напряжение от ШИ-модулятора, подаваемое на обмотку двигателя.

Например: если ротор двигателя имеет два полюса, то при одном полном обороте магнитного поля на статоре, ротор совершает один полный реальный оборот.

При 4 полюсах, чтобы повернуть вал двигателя на один полный оборот потребуется два оборота магнитного поля на статоре. Чем больше количество полюсов ротора, тем больше потребуется электрических оборотов для вращения вала двигателя на один оборот.

В нашем случае, имеется 12 магнитов на роторе. Для того, чтобы провернуть ротор на один оборот, потребуется 12/2=6 электрических оборотов поля. Поэтому, учитывая особенность конструкции двигателя и инверторную систему управления, для питания фаз двигателя необходима электрическая частота значительно выше 50Гц.

Чтобы добиться управления оборотами двигателя нужно наложить сигнал ШИМ, на сигналы, подаваемые на ключи. Для этого, микроконтроллер электронного блока управления, программно формирует ШИМ для каждого из ключей (IGBT). В программу контроллера, производитель закладывает определённый алгоритм и все данные для управления конкретным двигателем.

Мы пояснили немного суть системы управления двигателем, а вот детальный обзор устройства и принцип работы инверторного блока управления — очень объёмный материал и в рамках данной статьи мы рассматривать не будем.

6. Неисправности и диагностика двигателя

Как и говорилось выше, сам по себе двигатель довольно надёжный, относительно простой и в практике известны единичные случаи выхода из строя обмоток статора. Магниты на статоре имеют конечно не самое высшее качество, но их отклеивание или расколы почти не встречались.

Уязвимая деталь, пожалуй только датчик Холла. При возникновении его неисправности, отсутствует сигнал положения ротора, что приводит к некорректной работе системы питания фаз двигателя. В этом случае можно наблюдать, как ротор двигателя стопорится и издаёт дребезжащий металлический звук. В стиральных машинах LG, эта проблема зачастую сопровождается кодом неисправности «SE» на модуле интерфейса.

В отличие от коллекторного двигателя, запустить и проверить трёхфазный двигатель напрямую вне стиральной машины без каких-либо специальных приспособлений не получится, поскольку статор крепится к баку, а ротор к валу барабана стиральной машины. Поэтому, при наличии обычного цифрового мультиметра, можно проверить только сопротивление обмоток фаз статора. В связи с этим, на практике, при диагностировании неисправности, проблемную деталь двигателя или модуль управления, выявляют путём замены детали на заведомо исправную.

7. Преимущества и недостатки BLDC двигателей

Более ярким получится сравнение трёхфазного двигателя (BLDC) с традиционным коллекторным двигателем, которым оснащено большинство стиральных машин.

К преимуществу двигателей BLDC стоит отнести:

  • низкий уровень шума
  • относительно простая конструкция
  • особое позиционирование двигателя в стиральной машине, позволяющее снизить колебание бака
  • отсутствие приводного ремня, из-за которого терялась часть полезной энергии двигателя на преодоление сил трения ремня, между шкивом двигателя и шкивом барабана
  • отсутствие уязвимого коллекторно-щёточного узла, имеющего ограниченный ресурс и требующего обслуживания

К недостаткам двигателя BLDC относятся:

  • достаточно сложная система управления ( по сравнению с коллекторным двигателем)

Справедливости ради, стоит отметить, что двигатель стиральной машины LG с прямым приводом не идеально бесшумный. В момент пуска двигателя, из-за взаимодействия магнитных полей статора с магнитами ротора, возникают колебания последнего, сопровождающиеся характерным металлическим звоном. По мере увеличения оборотов ротора, звук становится более мягким, но всё-равно своеобразным и характерным для всех стиральных машин LG с прямым приводом барабана.

Статья подготовлена интернет-магазином A-qualux.ru

Сравнение соединений «звезда» и «треугольник» в 3-фазных системах

Соединения «звезда» и «треугольник» — это два типа соединений в 3-фазных цепях. Соединение «звезда» — это 4-проводная система, а соединение «треугольник» — 3-проводная система.

Перед тем, как вдаваться в подробности о соединении звездой, соединением треугольником и сравнивать их, давайте сделаем очень краткое замечание о трехфазном электричестве.

Однофазная система состоит всего из двух проводников (проводов): один называется фазным (иногда линейным, токоведущим или горячим), по которому протекает ток, а другой называется нейтральным, который действует как обратный путь для завершения схема.

В трехфазной системе у нас есть как минимум три проводника или провода, передающие переменное напряжение. Более экономично передавать мощность с использованием трехфазного источника питания по сравнению с однофазным источником питания, поскольку трехфазный источник питания может передавать в три раза больше мощности всего с тремя проводниками по сравнению с двухпроводным однофазным источником питания. .

Таким образом, большая часть вырабатываемой и распределяемой электроэнергии на самом деле является трехфазной (но большинство домохозяйств будет получать однофазное питание). Чтобы узнать больше об однофазных и трехфазных источниках питания, прочитайте учебник «Разница между однофазными и трехфазными источниками питания».

Далее, трехфазная система электроснабжения может быть устроена двумя способами. Это: звезда (также называемая Y или звезда) и дельта (Δ).

Схема

Тумблер

Соединение звездой

При соединении звездой 3 фазных провода соединяются с общей точкой или точкой звезды, а нейтраль берется из этой общей точки. Из-за своей формы соединение «звезда» иногда также называют соединением «звезда» или «звезда».

Если используются только трехфазные провода, то это называется трехфазной трехпроводной системой. Если также используется нейтральная точка (что часто бывает), то это называется 3-фазной 4-проводной системой. На следующем изображении показано типичное звездообразное соединение.

Соединение треугольником

В соединении треугольником имеется только 3 провода для распределения, и все 3 провода являются фазами (в соединении треугольником нейтраль отсутствует). На следующем изображении показано типичное дельта-соединение.

Сравнение соединений «звезда» и «треугольник»

Давайте лучше разберемся в этих соединениях, используя следующее сравнение соединений «звезда» и «треугольник».

Соединения треугольником Соединения треугольником
Соединение звездой (звезда или звезда)
Соединение треугольником (Δ)
Соединение «звезда» представляет собой 4-проводное соединение (в некоторых случаях 4-й провод не является обязательным) Соединение треугольником — это 3-проводное соединение.
Возможны два типа систем соединения звездой: 4-проводная 3-фазная система и 3-проводная 3-фазная система. В соединении треугольником возможна только 3-проводная 3-фазная система.
Из 4 проводов 3 провода являются фазами и 1 провод является нейтральным (общая точка 3 проводов). Все 3 провода являются фазами соединения треугольником.
При соединении звездой один конец всех трех проводов соединяется с общей точкой в ​​форме буквы Y, так что все три открытых конца трех проводов образуют три фазы, а общая точка образует нейтраль. В соединении треугольником каждый провод соединяется с двумя соседними проводами в форме треугольника (Δ), и все три общие точки соединения образуют три фазы.
Общая точка Звездного Соединения называется Нейтральной или Звездной Точкой. Нет нейтрали в Delta Connection
Линейное напряжение (напряжение между любыми двумя фазами) и фазное напряжение (напряжение между любой фазой и нейтралью) различаются. Линейное напряжение и фазное напряжение совпадают.
Линейное напряжение — это корень, умноженный на троекратное фазное напряжение, т. е. VL = √3 VP. Здесь VL — линейное напряжение, а VP — фазное напряжение. Линейное напряжение равно фазному напряжению, т. е. VL = VP.
При соединении звездой вы можете использовать два разных напряжения, поскольку VL и VP различаются. Например, в системе 230/400 В напряжение между любым фазным проводом и нейтральным проводом составляет 230 В, а напряжение между любыми двумя фазами составляет 400 В. В соединении треугольником мы получаем только одну величину напряжения.
Линейный ток и фазный ток совпадают. Линейный ток в три раза превышает фазный ток.
В звездообразном соединении IL = IP. Здесь IL — линейный ток, а IP — фазный ток. В соединении треугольником, IL = √3 IP
Общая трехфазная мощность при соединении звездой может быть рассчитана с использованием следующих формул.

P = 3 x VP x IP x Cos(Φ) или
P = √3 x VL x IL x Cos(Φ)
Общая трехфазная мощность в соединении треугольником может быть рассчитана с использованием следующих формул.
P = 3 x VP x IP x Cos(Φ) или
P = √3 x VL x IL x Cos(Φ)
Поскольку линейное напряжение и фазное напряжение различаются (VL = √3 VP), при соединении звездой требуется меньше изоляции для каждой фазы. При соединении треугольником линейное и фазное напряжения одинаковы, поэтому для отдельных фаз требуется дополнительная изоляция.
Обычно Star Connection используется как в передающих, так и в распределительных сетях (с однофазным или трехфазным питанием). Delta Connection обычно используется в распределительных сетях.
Поскольку требуется меньше изоляции, Star Connection можно использовать на больших расстояниях. используются для более коротких расстояний.
Соединения звездой часто используются в приложениях, требующих меньшего пускового тока часто используются в приложениях, требующих высокого пускового момента.

Цепи управления прямым/обратным ходом – базовое управление двигателем

Цепи

Если трехфазный двигатель должен вращаться только в одном направлении, и при первоначальной подаче питания обнаруживается, что он вращается в направлении, противоположном желаемому, все, что необходимо, — это поменять местами любые два из трех проводов, питающих двигатель. . Это можно сделать на двигателе или на самом двигателе.

 

Вращение трехфазного двигателя

После переключения двух линий направление магнитных полей, создаваемых в двигателе, теперь заставит вал вращаться в противоположном направлении. Это известно как реверсирование файла .

Если двигатель должен вращаться в двух направлениях, то ему потребуется пускатель двигателя прямого/обратного хода, который имеет два трехполюсных контактора с номинальной мощностью, а не один, как в обычном пускателе. Каждый из двух разных пускателей электродвигателя питает двигатель с разным чередованием фаз.

Когда на контактор прямого хода подается питание, силовые контакты соединяют линию L1 с T1, линию L2 с T2 и линию L3 с T3 на двигателе. Когда на контактор реверса подается питание, силовые контакты соединяют линию L1 с T3, линию L2 с T2 и линию L3 с T1 на двигателе.

Силовая цепь прямого/обратного хода

Поскольку два пускателя двигателя управляют только одним двигателем, необходимо использовать только один набор нагревателей реле перегрузки. Обратные пути для обеих катушек пускателя соединяются с цепью пускателя, так что при перегрузке в любом направлении катушки пускателя обесточиваются и двигатель останавливается.

Обратите внимание, что два контактора должны быть и таким образом, чтобы они не могли быть запитаны одновременно. Если на обе катушки стартера одновременно подается напряжение, произойдет короткое замыкание с потенциально опасными последствиями.

Пускатели прямого/обратного хода поставляются с двумя наборами нормально разомкнутых контактов, которые действуют как удерживающие контакты в каждом направлении. Они также поставляются с двумя наборами нормально замкнутых вспомогательных контактов, которые действуют как электрические блокировки.

Пускатели прямого/обратного хода никогда не должны замыкать свои силовые контакты одновременно. Лучший способ обеспечить это — электрические блокировки, которые предотвращают подачу питания на одну катушку, если другая катушка задействована. Сбой в электрической блокировке может привести к одновременному включению обеих катушек.

. Если оба находятся под напряжением, требуется некоторая форма механической блокировки, чтобы предотвратить втягивание обоих. движение соседней катушки. Это означает, что даже если обе катушки находятся под напряжением, только один якорь сможет полностью втянуться. Катушка, которая не может втянуться, будет издавать ужасный дребезжащий звук, пытаясь замкнуть магнитную цепь.

На механические блокировки следует полагаться как на крайнюю меру защиты.

Электрическая блокировка достигается путем установки нормально замкнутого контакта катушки одного направления последовательно с катушкой противоположного направления и наоборот. Это гарантирует, что когда передняя катушка находится под напряжением, нажатие на реверс не приведет к возбуждению обратной катушки. Такая же ситуация возникает при включении обратной катушки. В обоих случаях необходимо нажать кнопку останова, чтобы обесточить рабочую катушку и вернуть все ее вспомогательные контакты в исходное состояние. Затем можно включить катушку противоположного направления.

Цепь управления прямым/обратным ходом

При разработке схемы управления для цепей прямого/обратного хода мы начинаем со стандартного, добавляем вторую нормально разомкнутую кнопку и ветвь удерживающего контакта для второй катушки. Одной кнопки остановки достаточно, чтобы отключить двигатель в обоих направлениях.

Две катушки механически заблокированы, а нормально замкнутые контакты мгновенного действия обеспечивают электрическую блокировку.

Если нажата кнопка прямого хода, пока не задействована катушка реверса, ток найдет путь через нормально замкнутый контакт реверса и подаст питание на катушку прямого хода, в результате чего все, что связано с этой катушкой, изменит свое состояние. Закроется, и нормально замкнутая электрическая блокировка разомкнется. Если нажать кнопку реверса при включенной катушке прямого хода, ток не сможет пройти через нормально замкнутый контакт прямого хода, и ничего не произойдет.

Чтобы запустить двигатель в обратном направлении, передняя катушка должна быть обесточена. Для этого необходимо нажать кнопку остановки, после чего кнопка реверса сможет подать питание на катушку реверса.

Независимо от направления вращения двигателя, эта схема будет работать как стандартная трехпроводная схема, обеспечивающая до тех пор, пока не будет нажата кнопка останова или не произойдет .

Блокировка кнопок прямого/обратного хода

Блокировка кнопок требует использования четырехконтактных кнопок мгновенного действия, каждая из которых имеет набор нормально разомкнутых и нормально замкнутых контактов.

Для блокировки кнопок просто подключите нормально замкнутые контакты одной кнопки последовательно с нормально разомкнутыми контактами другой кнопки, и удерживающие контакты будут соединены с нормально разомкнутыми контактами соответствующей кнопки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *