Как проверить симистор мультиметром, чтобы не покупать новую деталь? Симистор для шуруповерта


Проверка симистора и тиристора мультиметром

При помощи домашнего тестера (мультиметра) можно проверять самые разные радиоэлементы. Для домашнего мастера, увлекающегося электроникой – это настоящая находка. Например, проверка тиристора мультиметром может избавить вас от необходимости поиска новой детали во время ремонта электрооборудования.

Для понимания процесса, разберем, что такое тиристор:

Это полупроводниковый прибор, выполненный по классической монокристальной технологии. На кристалле имеется три или более p-n перехода, с диаметрально противоположными устойчивыми состояниями. Основное применение тиристоров – электронный ключ. Можно эффективно использовать эти радиоэлементы вместо механических реле.

Включение происходит регулируемо, относительно плавно и без дребезга контактов. Нагрузка по основному направлению открытия p-n переходов подается управляемо, можно контролировать скорость нарастания рабочего тока.

К тому же тиристоры, в отличие от реле, отлично интегрируются в электросхемы любой сложности. Отсутствие искрения контактов позволяет применять их в системах, где недопустимы помехи при коммутации.

Деталь компактна, выпускается в различных форм-факторах, в том числе и для монтажа на охлаждающих радиаторах.

Управляются тиристоры внешним воздействием:

  • Электрическим током, который подается на управляющий электрод;
  • Лучом света, если используется фототиристор.

При этом, в отличие от того же реле, нет необходимость постоянно подавать управляющий сигнал. Рабочий p-n переход будет открыт и по окончании подачи управляющего тока. Тиристор закроется, когда протекающий через него рабочий ток опустится ниже порога удержания.

Еще одним свойством тиристора, которое используется как основная характеристика – он является односторонним проводником. То есть паразитные токи в обратном направлении протекать не будут. Это упрощает схемы управления радиоэлемента.

Тиристоры выпускаются в различных модификакциях, в зависимости от способа управления, и дополнительных возможностей.

  • Диодные прямой проводимости;
  • Диодные обратной проводимости;
  • Диодные симметричные;
  • Триодные прямой проводимости;
  • Триодные обратной проводимости;
  • Триодные ассиметричные.

Существует разновидность триодного тиристора, имеющая двунаправленную проводимость.

Что такое симистор, и чем он отличается от классических тиристоров?

Симистор (или «триак») – особая разновидности триодного симметричного тиристора. Главное преимущество – способность проводить ток на рабочих p-n переходах в обоих направлениях. Это позволяет использовать радиоэлемент в системах с переменным напряжением.

Принцип работы и конструктивное исполнение такое же, как у остальных тиристоров. При подаче управляющего тока p-n переход отпирается, и остается открытым до снижения величины рабочего тока.Популярное применение симисторов – регуляторы напряжения для систем освещения и бытового электроинструмента.

Работа этих радиокомпонентов напоминает принцип действия транзисторов, однако детали не являются взаимозаменяемыми.

Рассмотрев, что такое тиристор и симистор, мы с вами научимся, как проверять эти детали на работоспособность.

Как прозвонить тиристор мультиметром?

Сразу оговоримся – проверить исправность тиристора можно и без тестера. Например, с помощью лампочки от фонарика и пальчиковой батарейки. Для этого включаем последовательно источник питания, соответствующий напряжению лампочки, рабочие выводы тиристора, и лампочку.

Важно! Не забудьте о том, что обычный тиристор проводит ток лишь в одном направлении. Поэтому соблюдайте полярность.

При подаче управляющего тока (достаточно батарейки АА) – лампочка будет гореть. Значит, управляющая цепь исправна. Затем отсоединяем батарейку, не отключая источник рабочего тока. Если p-n переход исправный, и настроен на определенную величину тока удержания – лампочка продолжает гореть.

Если под рукой нет подходящей лампы и батарейки, следует знать, как проверить тиристор мультиметром.

    1. Переключатель тестера устанавливаем в режим «прозвонка». При этом на щупах проводов появится достаточное напряжение для проверки тиристора. Рабочий ток не открывает p-n переход, поэтому сопротивление на выводах будет высоким, ток не протекает. На дисплее мультиметра высвечивается «1». Мы убедились в том, что рабочий p-n переход не пробит;
    2. Проверяем открытие перехода. Для этого соединяем управляющий вывод с анодом. Тестер дает достаточный ток для открытия перехода, и сопротивление резко уменьшается. На дисплее появляются цифры, отличные от единицы. Тиристор «открыт». Таким образом, мы проверили работоспособность управляющего элемента;

  1. Размыкаем управляющий контакт. При этом сопротивление снова должно стремиться к бесконечности, то есть на табло мы видим «1».

Почему тиристор не остался в открытом состоянии?

Дело в том, что мультиметр не вырабатывает величину тока, достаточную для срабатывания тиристора по «току удержания». Этот элемент мы проверить не сможем. Однако остальные пункты проверки говорят об исправности полупроводникового прибора. Если поменять местами полярность – проверка не пройдет. Таким образом, мы убедимся в отсутствии обратного пробоя.

При помощи мультиметра можно проверить и чувствительность тиристора. В этом случае, мы переводим переключатель тестера в режим омметра. Измерения производятся по раннее описанной методике. Только мы каждый раз меняем чувствительность прибора. Начинаем с предела измерения вольтметра «х1».

Чувствительные тиристоры при отключении управляющего тока сохраняют открытое состояние, что мы и фиксируем на приборе. Увеличиваем предел измерения до «х10». В этом случае ток на щупах тестера уменьшается.

Если при отключении управляющего тока переход не закрывается – продолжаем увеличивать предел измерения до срабатывания тиристора по току удержания.

Важно! Чем меньше ток удержания – тем чувствительнее тиристор.

При проверке деталей из одной партии (или с одинаковыми характеристиками), выбирайте более чувствительные элементы. У таких тиристоров гибче возможности по управлению, соответственно шире область применения.

Освоив принцип проверки тиристора – легко догадаться, как проверить симистор мультиметром.

Важно! При прозвонке необходимо учитывать, что этот полупроводниковый ключ имеет симметричную двустороннюю проводимость.

Проверка симистора мультиметром

Схема подключения для проверки аналогичная. Можно использовать лампу накаливания или мультиметр с широким диапазоном измерений в режиме омметра. После прохождения тестов при одной полярности, переключаем щупы тестера на полярность обратную.

Исправный симистор должен показать весьма похожие результаты проверки. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если радиодеталь, нуждающаяся в проверке, находится на монтажной плате – нет необходимости ее выпаивать для теста. Достаточно освободить управляющий вывод. Важно! Не забудьте предварительно обесточить проверяемый электроприбор.

В заключении смотрите видео: Как проверить тиристор мультиметром.

obinstrumente.ru

Регулятор оборотов дрели: схема, принцип работы

Оглавление: [скрыть]

  • Назначение регулятора оборотов
  • Использование дрели в качестве станка
  • Ремонт кнопки с регулятором оборотов
  • Регулятор оборотов для микродрели

Сегодня невозможно найти человека, который бы не знал о существовании электрической дрели. Многим приходилось пользоваться этим инструментом. Но как устроена эта незаменимая в хозяйстве вещь, известно далеко не каждому.

Виды дрелей.

Внутри корпуса дрели расположен электродвигатель, система его охлаждения, редуктор, регулятор оборотов дрели. О работе регулятора оборотов дрели стоит поговорить несколько подробнее. Все детали во время работы изнашиваются, особенно подвержена этому процессу кнопка включения дрели. А с ней непосредственно связана система регулировки оборотов.

Назначение регулятора оборотов

Устройство плавного пуска дрели.

Регулятор оборотов современной электрической дрели располагается внутри кнопки включения прибора. Достичь таких малых размеров позволяет микропленочная технология, по которой он собран. Все детали и сама плата, на которой расположены эти детали, отличаются малыми размерами. Основная деталь регулятора — симистор. Принцип его работы состоит в изменении момента замыкания цепи и включения симистора. Происходит это так:

  1. После включения кнопки симистор получает на свой управляющий электрод напряжение, имеющее синусоидальную форму.
  2. Симистор открывается, и ток начинает течь через нагрузку.

При большей амплитуде управляющего напряжения симистор включается раньше. Амплитуда управляется с помощью переменного резистора, который соединен с пусковым курком дрели. Схема подключения кнопки в разных моделях может быть немного разной. Только не стоит путать регулятор оборотов с устройством управления реверсом. Это совершенно разные вещи. Иногда они могут размещаться в разных корпусах. Регулятор оборотов может предусматривать подключение конденсатора и обоих проводов от розетки.

Вернуться к оглавлению

Использование дрели в качестве станка

Рисунок 1. Типовая схема регулятора оборотов дрели.

Ручная дрель может применяться нестандартно. На ее основе делают разнообразные станки: сверлильный, шлифовальный, циркулярный и другие. В таких станках функция регулирования оборотов является очень важной. У большинства бытовых дрелей обороты регулируются кнопкой пуска аппарата. Чем сильнее она нажата, тем выше обороты. Но фиксируются они только на максимальных значениях. Это в большинстве случаев может оказаться существенным недостатком.

Можно выйти из данной ситуации путем самостоятельного изготовления выносного варианта регулятора оборотов. В качестве регулятора вполне можно применить диммер, который обычно применяют для регулировки освещенности. Схема регулятора довольно проста и представлена на рис. 1. Для его изготовления нужно к розетке присоединить провода разной длины. Длинный провод другим концом присоединяется к вилке. Остальное собирается по схеме. Рекомендуется использовать дополнительный автоматический выключатель, который отключит устройство в случае аварии.

Самодельный регулятор оборотов готов. Можно выполнить пробный пуск. Если он работает нормально, можно поместить его в подходящего размера коробку и закрепить на станине будущего станка в удобном месте.

Вернуться к оглавлению

Ремонт кнопки с регулятором оборотов

Рисунок 2. Схема регулятора оборотов для микродрели.

Ремонт кнопки представляет собой довольно непростой процесс, требующий определенных навыков. При открытии корпуса некоторые детали могут просто выпасть и потеряться. Поэтому в работе нужна осторожность. В случае неполадок обычно выходит из строя симистор. Стоит эта деталь очень дешево. Разборка и ремонт происходят в следующем порядке:

  1. Разобрать корпус кнопки.
  2. Промыть и прочистить внутренности.
  3. Снять плату с находящейся на ней схемой.
  4. Выпаять сгоревшую деталь.
  5. Впаять новую деталь.

Разобрать корпус очень просто. Нужно отогнуть боковины и вывести крышку из фиксаторов. Делать все нужно аккуратно и осторожно, чтобы не потерять 2 пружинки, которые могут выскочить. Чистить и протирать внутренности рекомендуется спиртом. Зажимы-контакты в форме медных квадратиков выдвигаются из пазов, плата легко снимается. Сгоревший симистор обычно хорошо виден. Осталось выпаять его и впаять на его место новую деталь. Сборка регулятора производится в обратном порядке.

Вернуться к оглавлению

Регулятор оборотов для микродрели

Схема устройства ударной дрели.

Многим приходится сверлить печатные радиоплаты. Обычно для такой работы используется микродрель, изготовленная из различных деталей собственными руками. Для таких инструментов тоже можно сделать регулятор оборотов. Схем для изготовления можно найти множество. Подобная схема регулятора оборотов представлена на рис. 2. Все детали довольно доступные. Микросхема LM317 устанавливается на радиатор для защиты ее от перегрева. Конденсаторы обычные, электролитические, на 16 В.

Диоды марки 1N4007 можно менять на любые другие, выдерживающие ток 1 А. Светодиод АЛ307 может быть заменен любым другим. Вся схема собирается на стеклотекстолитовой плате. Резистор R5 может быть проволочный или другой мощностью, 2 Вт.

Блок питания на напряжение 12 В. При большем напряжении придется менять конденсаторы на схеме. Готовое изделие обычно сразу начинает работать. Частота вращения двигателя регулируется резистором Р1. Чувствительность к нагрузке устанавливается резистором Р2.

Регулятор оборотов дрели — необходимое устройство, особенно когда дрель используется в качестве основы для изготовления самодельного станка.

В современных приборах это устройство размещается в кнопке пуска. Самодельное приспособление можно разместить в любом подходящем корпусе. Схем изготовления существует очень много.

moiinstrumenty.ru

принцип работы, проверка и включение, схемы

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

www.asutpp.ru

Что такое симистор? Подробное описание структуры, принципа работы, ВАХ полупроводника

Симисторы – это приборы, которые являются полупроводниковыми компонентами (по терминологии США, они называются триаки), выполняющие ключевую роль по проведению тока в оба направления.

Прежде всего, симистор – это ключ-регулятор, используемый для цепей постоянного тока, он также выполняет функцию двунаправленного транзистора. Элемент состоит из двух основных силовых электродов – это электрод, находящийся со стороны управляющего электрода и СЭ –электрод со стороны основания элемента. Свое название симистор получил в результате использования двух встречно-параллельных включаемых тиристоров с одним управляющим электродом.

Рис.№1. Условное схематичное обозначение симистора и его внешний вид с обозначением позиций: 1 – анод; 2 – силовой электрод; 3 – управляющий электрод или катодный выход; 4 управляющий выход. Управляющий электрод выводится на туже сторону, что и катод. Анод служит основанием устройства и изготовлен в виде шестигранника и крепежной шпильки, на которой нарезана резьба для установки на охлаждающем радиаторе. Катод и управляющий выход отделены от основания изоляцией.

Благодаря способности проводить электроток в обе стороны симистор может выполнять функцию трехэлектродного полупроводникового прибора.

Он может переходить из закрытого положения в состояние открытости и работать в обратную сторону при обеих полярностях напряжения, присутствующего на основных электродах.

Рис. №2. ВАХ симистора. В соответствии с устройством полупроводниковой структуры, включенный в основную цепь он переходит в состояние проводимости при поступлении на управляющий электрод напряжения положительного значения относительно СЭУ напряжения, либо U обеих полярностей.

Полупроводниковая структура симистора

Структура симистора состоит из пластины, состоящей из чередующихся слоев с электропроводностями p- и n- типа и из контактов электродов основного и управляющего действия.

.           Всего в структуре полупроводника содержится пять слоев p- и n-типа. Область между слоями называется p-n-переходом, который обладает нелинейной ВАХ с небольшим сопротивлением в обратном направлении, где минус – это n-слой, а плюс – p-слой и высокое значение сопротивления в обратном направлении. Пробой p-n-перехода происходит при напряжении равном несколько тысяч вольт.

Во время включения симистора в прямом направлении в работу вступает правая половина структуры. Левая область структуры выключена, она считается для тока, с обладанием очень высоким сопротивлением. Характеристики симистора динамического и статического плана при его действии в прямом направлении, при поступлении положительного управляющего сигнала соответствуют аналогичным характеристикам тиристора, работающего в прямом направлении.

Рис. №4. Структура симистора, включенного в обратном направлении. По этой схеме к СЭУ прилагается напряжение со знаком плюс, относительно СЭ, а p—n-переходы j2  и j4  подключаются в прямом, а p—n-переходы j1  и j3 – в обратную сторону. Благодаря этому структура может рассматриваться, как структура тиристора, подключенная в обратном направлении, не принимающая участие в работе по пропусканию тока. В этом случае действие прибора определяется при помощи левой части структуры и представляет собой обратно ориентированную p—n—p—n структуру с добавочным пятым слоем n0 , который граничит со слоем p1.

Использование симистора

Симистор представляется настолько гибким и универсальным устройством, что благодаря его свойству переключения в проводящее состояние запускаемым импульсом с положительным или отрицательным знаком, который не зависит от источника  проявляющего свойства мгновенной полярности. По сути названия анод и катод для прибора не имеют большой актуальности.

  1. Одно из популярных и простейших сфер использования симистора может считаться его применение в качестве твердотельного реле. Для него характерно малое значение пускового тока достаточного для нагрузки с большими токами. Функцию ключа в таком устройстве может играть геркон, или обладающее большой чувствительностью термореле и прочие контактные пары с током до 50мА, при этом величина тока нагрузки может ограничиваться исключительно показателями, на которые рассчитан симистор.

Рис.№5. Схема твердотельного реле с использованием симистора.

  1. Не менее широко использование симистора в качестве регулятора интенсивности освещения и управления скоростью вращения электромотора. Схема построена на использовании запускающих элементов, которые устанавливаются RC-фазовращателем, такой элемент, как потенциометр регулирует интенсивность освещения, а резистор служит для ограничения тока нагрузки. Формирование импульсов выполняется с помощью динистора. После пробоя в динисторе, который происходит в результате разности потенциалов на конденсаторе, импульс разряда конденсатора, возникающий мгновенно включает симистор.

Рис. №6. Схема регулирования света с использованием симистора с фазовым управлением.

  1. Управление мощностью в нагрузке с использованием в схеме добавочной RC-цепочки, что дает большой фазовый сдвиг, который облегчает задачу по управлению мощности.

Преимущества использования симисторов

  • Увеличение разрешенной критической величины напряжения коммутации, что разрешает управления большими реактивными нагрузками без существенных сбоев в коммутации. Это позволяет уменьшить число компонентов, размеры печатной платы, снизить цену и убрать потери на рассеивание энергии демпфером.
  • Повышение критической величины изменения тока коммутации, что повышает качество работы на высокой частоте для несинусоидального напряжения.
  • Большая чувствительность к высокой температуре рабочего процесса.
  • Высокое значение допустимого напряжения снижает стремление к самовключению из состояния отсутствия проводимости при большой температуре, что разрешает их использование для резистивных нагрузок по управлению бытовой и нагревательной техникой.
  • Долговечность симистора, обусловленная рабочими температурными перепадами, отличается практически неограниченным ресурсом.
  • Отсутствие искрообразования и возможность управления в момент нулевого тока в сети, что снижает электромагнитные помехи.

Основные достоинства семистора:

  1. большая частота срабатывания для высокой точности управления;
  2. высокий ресурс по сравнению с релейными электромеханическими устройствами;
  3. возможность добиться небольших размеров приборов;
  4. отсутствие шума при включении и отключении электроцепей.

 

Силовая электроника, с использованием  симисторов, разработанная отечественными производителями благодаря своим качественным показателям может составить западным фирмам высокую конкуренцию.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

Симистор BTA41-800B или точечная сварка

На mysku.ru уже были обзоры, посвященные созданию аппаратов для точечной сварки. Предмет очень дорогой при покупке в готовом виде, но часто очень нужный в хозяйстве для тех, кто любит что то поделать руками. Напомню, что этот аппарат позволяет легко приваривать контактные пластины к аккумуляторам, сваривать тонкие листы металла, варить стальную проволоку и тд. Под катом моя версия реализации данного агрегата. Читателей ожидают размышления, схемы, платы, программирование, конструирование (все элементы колхозинга) с множеством фото и видео… Так как в обзоре будут использоваться многие детальки, то я по ходу обзора приведу на них ссылки, возможно сейчас есть эти же детали дешевле у других продавцов.

Предмет обзора приехал в жесткой пластиковой упаковке, в которой лежало 10 экземпляров симистора BTA41-800B.

Данный элемент нам требуется для включения и выключения в нужные моменты сварочного аппарата. Максимальное обратное напряжение 800 В Максимальное значение тока в открытом состоянии 40 А Рабочая температура от -40 до 125 °C Корпус TOP-3

Симистop (симметричный триодный тиристор) или триак (от англ. TRIAC — triode for alternating current) — полупроводниковый прибор, являющийся разновидностью тиристоров и используемый для коммутации в цепях переменного тока. Следует отметить, что симистop изобретён и запатентован был в СССР (в г. Саранске на заводе «Электровыпрямитель» в 1962-1963 г. ). Блок схема этого элемента: A1 и A2 — силовые электроды G — управляющий электрод В закрытом состоянии проводимость симистора отсутствует, нагрузка выключена. При подаче на управляющий электрод отпирающего сигнала между основными электродами симистора возникает проводимость, нагрузка оказывается включённой. Характерно, что симистор в открытом состоянии проводит ток в обоих направлениях.

Подробно характеристики BTA41-800B можно посмотреть в datasheet.

Для управления симистором обычно используются специальные симисторные оптроны (triac driver). Оптосимисторы принадлежат к классу оптронов и обеспечивают очень хорошую гальваническую развязку (порядка 7500 В) между управляющей цепью и нагрузкой. Эти радиоэлементы состоят из инфракрасного светодиода, соединенного посредством оптического канала с двунаправленным кремниевым симистором. Последний может быть дополнен отпирающей схемой, срабатывающей при переходе через нуль питающего напряжения..

В большинстве случаев предпочтительным является использование оптосимисторов с детекцией нуля, по целому ряду причин. Иногда (при резистивной нагрузке детекция нуля не важна. А иногда нужно включать нагрузку например на максимуме синусоиды сетевого напряжения, тогда приходится сооружать свою схему детеции и, конечно, использовать оптосимистор без детекции нуля.

Перейдем к нашему устройству. Так уж сложились звезды, что мне потребовалось заменить банки в паре аккумуляторов шуруповертов и в руки попала неисправная микроволновка… И в то же время, в голове давненько витала мысль о необходимости соорудить себе точечную сварку. И я решился на этот шаг.

Разобрал микроволновку (исходная мощность 1200 Вт), вынул все детали. Забегая вперед скажу, что нам потребуется часть проводов с клеммами, трансформатор и вентилятор. Остальное можно использовать в других устройствах (в комментариях можно поделиться своими соображениями на этот счет). Мои трансформатор с вентилятором и провода, выглядели так: Необходимо сохранив первичную обмотку удалить вторичную, которая сделана более тонким проводом. Удалять можно разными способами, мне показалось более приемлемым спиливание дремелем выступающей части обмотки с последующим выбиванием остатков. Чтобы не повредить первичную обмотку, рекомендую вставить фанерку подходящей толщины между обмотками.

Далее необходимо намотать толстый провод вместо извлеченной вторичной обмотки. Я использовал вот такой многожильный провод сечением 70 мм2: Старое его название ПВ3-70. Больших усилий намотка провода не требовала, получилось так: Я купил 2 метра провода, думаю, можно было обойтись и одним метром. Зачищаем концы: Готовим паяльное оборудование (флюс лти-120, катушка 2мм припоя и газовая горелка надетая на баллон газа): Наконечник лучше использовать из луженной меди под провод 70 мм (ТМЛ 70-12-13): Обильно смачиваем флюсом внутренние поверхности наконечников и провода. Вставляем провод в наконечник подгибая непослушные проводки (не быстрая процедура), и греем горелкой подавая сбоку припой. Результат примерно такой: Все ужасы закроем термоусадкой: На мой провод отлично уселась вот такая: На этой стадии уже можно подключить трансформатор к розетке проводом от микроволновки (он уже имеет клеммы для подключения) и даже попробовать сделать первую сварку, коммутируя нажатием на концы толстого провода, единственное, я рекомендую прикрутить какие-то медные детали, так как наконечники портить не желательно. Варить получится разве что какие-то толстые детали — так как возможности коммутации весьма ограничены.

Перейдем к электрической части. Я уже говорил что коммутацию первичной обмотки решил делать симистором, осталось решить вопрос каким оптосимистором им управлять. Я решил делать схему распознавания нуля, поэтому выбрал вариант без детекции нуля, взяв MOC3021. Datasheet на эту микросхему. Типовое включение следующее: Вентилятор от микроволновки я решил использовать для охлаждения трансформатора и платы. Так как он тоже на 220 В, то для его включения я решил использовать релюшку OMRON G3MB-202P, она компактная и хорошо справляется с маломощной нагрузкой.

Для управления логикой я решил использовать контроллер atmega328p в корпусе QFP32.

Блок питания нужен на 5 Вольт, я применил такой. Он рассчитан на 600 мА, чего вполне достаточно.

Основной фокус в данном деле это синхронизация с сетью 220 В. Нужно научиться включать нагрузку в момент когда сетевое напряжение имеет определенное значение. В итоге я пришел к такой схеме: Особенности: VD1 — нужно выбирать быстрый диод (я взял MUR) — он нужен для шунтирования оптрона и избегания появления на нем обратного напряжения более 5 В, VD2 — подойдет любой выпрямительный (подойдет 1N4007 — он существенно снизит тепловую нагрузку на R2, убрав лишнюю полуволну), R2- следует взять мощностью 1-2 Вт (у меня под рукой не было и я поставил 2 резистора параллельно по 90 КОм на 1/4 Вт, температура оказалась приемлемой). А6 — это аналоговый вход контроллера, который использовал я для этих целей. R1 подтягивает вход контроллера к земле. В остальном схема довольно простая.

Нарисовал плату в программе Sprint Layout: Изготавливаем плату ЛУТ-ом. После травления в хлорном железе: После смывки тонера: После лужения: Вопреки привычной тактике, я сначала спаял силовую часть, чтобы ее отладить независимо от контроллера, на симистор решил приклеить радиатор, выпиленный из алюминиевого профиля: Получилось так: Убедился что все хорошо: Схема слежения за нулем выдает вот такое:

Припаял остальные элементы: Прошиваем загрузчик (благо я специально вывел пины SPI), и начинаем писать тестировать, исправлять, перепаивать… Для отладки интенсивно использовался осциллограф, я использую на даче такой, дома конечно удобнее стационарный:

Теперь можно припаять провода для подключения нагрузки (трансформатора и вентилятора), я использовал провода с клеммами от той же микроволновки, в этот момент промелькнула мысль не перепутать бы их при сборке…

Для проверки подключил лампу накаливания вместо трансформатора, на этом этапе сварка выглядит так:

Сдвиг в 3 мс — дает вот такие управляющие импульсы: А вот так выглядит то, что идет в нагрузку (масштаб сетевого напряжения специально взят иной): И вот так при другой длительности:

Для визуализации я использовал светодиод трехцветный (использовал только 2: синий и зеленый), с общим катодом. Когда сварочник включен в сеть, горит зеленый свет, когда идет сварка синий. Также используется звуковая сигнализация с помощью вот такой пищалки, при нажатии кнопки сварки проигрывается одна мелодия, после другая. Для визуализации процесса настройки, я использовал OLED дисплейчик с диагональю 1.3". Он компактный и хорошо виден из-за своей яркости — по моему оптимальное решение.

Стартовый экран выглядит так: Рабочий режим так: Как видно, можно задать три параметра: длительность сварочного импульса, количество импульсов и сдвиг относительно распознанного начала положительной полуволны.

Все параметры настраиваются энкодером KY-040. Я решил сделать такую логику: переключение режимов настройки осуществляется кратковременным нажатием энкодера, изменение текущего параметра в заданном диапазоне вращением энкодера, а чтобы сохранить текущие параметры нужно использовать длительное нажатие энкодера, тогда при загрузке будут именно они использоваться (значения по умолчанию).

Видео тестовой сварки с экранчиком и применением энкодера, в качестве нагрузки вместо трансформатора все та же лампочка 75 Вт:

Первый опыт сварки на жести от консервной банки, еще без корпуса: Результатом я остался доволен.

Но нужен корпус. Корпус решил изготовить из дерева. Один мебельный щит из Леруа у меня был, второй купил. Прикинул расположение и напилил, навырезал (получилось не особо аккуратно, но меня как корпус для аппарата точечной сварки вполне устраивает: Все управление решил сделать в передней части корпуса для удобства настройки в процессе работы: Сзади предусмотрел отверстия для забора воздуха: В качестве кнопки включения и предохранителя установил автомат на 10А.

Корпус покрасил черной краской: Для защиты установил решетки на заднюю панель:

Немного про кнопку включения. Ее решил делать отдельно, причем, мне хотелось иметь два варианта кнопки: стационарный — для длительной работы и мобильный — для быстрой сварки. Соответственно требовался разъем, в качестве которого выступил стандартный разъем для питания (припаял к нему проводки и изолировал термоусадкой): Стационарный вариант кнопки решил соорудить в виде педали: К ней шел коротенький проводок, видимо предполагается ее присоединение к длинному. Разбираем: Припаиваем ПВС 2х0.5: В исходном кабеле шло три провода: Нам черный не нужен. Собираем все обратно. И припаиваем на другой конец провода штекер: Мобильную версию изготовил совсем просто:

Экранчик и разъем для кнопки крепим в корпус: Туда же крепим нашу плату: Внутри довольно плотно: Помните я писал о мысли про неперепутывание нагрузок… так вот я перепутал. OMRON G3MB-202P — отправился к праотцам, начав находится включенным независимо от управляющего сигнала… Во он: Пришлось снимать стенку, потом плату и перепаивать релюху. Процесс сопровождался небольшим количеством нецензурных выражений. Причем плату до этого я уже покрыл защитным лаком в 2 слоя… Но не будем о грустном. Все получилось, прибор заработал.

Как известно, вращение вентилятора, особенно такого не маленького как в нашем случае, сопровождается вибрацией и нагрузкой на крепление, резьбовое соединение постепенно ослабевает и процесс усугубляется. Чтобы этого не происходило, я в своих поделках стараюсь пользоваться отечественным фиксатором резьбы Автомастергель от «Регион Спецтехно». Обзор этого замечательного геля я даже делал тут: Данный фиксатор является анаэробным, то есть полимеризуется именно там где нужно — в плотной скрутке резьбы.

На дно корпуса прикрутил гламурные ножки:

Тестовая сварка, принесла немало положительных эмоций: В качестве электродов нужно использовать медные пластины, у меня их не было, сплющил трубку от кондиционера — вполне нормально. Варилось вот это:

Итоговый вид агрегата: Вид сзади:

Гвозди сваривает вполне нормально:

Немного измерений. Параметры дачной электросети: Потребление холостого хода: При включенном вентиляторе: Из-за инерционности прибора и сварки короткими импульсами скорее всего прибор не может определить максимальную мощность, вот столько он показал: Токовые клещи у меня не умеют показывать пик, то что удалось зафиксировать кнопкой: В реальности я видел цифру в 400 А. Напряжение на контактах:

Теперь полезное применение. У одного человека (привет ему :) ) Шуруповерт перезимовал на даче и весной или даже осенью был затоплен паводком. Жалобы были на очень короткое время работы акумов 1-2 шурупа и все… Вот такая картина вскрытия: Акумы чувствовали себя явно не в порядке, позже это подтвердилось тестами: На замену были заказаны новые банки. И после окончания работ со сварочником, самое время было их заменить: Оторвать руками полоски у меня не вышло. Платка была отмыта провода тоже заменены:: Аккумулятор начал новую жизнь: Видео сварки аккумуляторов:

Результат всегда стабилен, оптимальное время 34 мс, количество импульсов 1, сдвиг 3 мс.

Спасибо всем, кто дочитал этот огромный обзор до конца, надеюсь кому-то данная информация окажется полезной. всем крепких соединений и добра!

П.С. Продолжение в этом обзоре

Готовое устройство тут.

mysku.ru


Смотрите также