Схема зарядного устройства для шуруповерта 12 вольт. Зарядка для шуруповерта 12 вольт


Схема зарядного устройства для шуруповерта 12 вольт — studvesna73.ru

Использование, электроинструмента существенно облегчает наш труд и сокращает время сборки. В настоящее время большую популярность набрали шуруповерты с автономным питанием от аккумуляторной батареи. В рамках данной статьи рассмотрим схему типичного зарядного устройства для шуруповерта А также советы по ремонту и варианты радиолюбительских конструкций.

Зарядное устройство для шуруповерта «Интерскол»

Силовую часть зарядного устройства шуроповерта представляет силовой трансформатор типа GS-1415 рассчитанный на мощность 25 Ватт.

Со вторичной обмотки трансформатора снимается пониженное переменное напряжение номиналом 18В оно следует на диодный мост из 4 диодов VD1-VD4 типа 1N5408, через плавкий предохранитель. Диодный мост. Каждый полупроводниковый элемент 1N5408 рассчитан на прямой ток до трех ампер. Электролитическая емкость C1 сглаживает пульсации появляющиеся в схеме после диодного моста.

Управление реализовано на микросборке HCF4060BE. которая совмещает в себе 14-разрядным счетчиком с компонентами задающего генератора. Она управляет биполярным транзистором типа S9012. Он нагружен на реле типа S3-12A. Таким образом схемотехнически реализован таймер, включающий реле на время заряда аккумуляторной батареи около часа. При включении ЗУ и подсоединения аккумулятора контакты реле находятся в нормально разомкнутом положении. HCF4060BE получает питание через стабилитрон 1N4742A на 12 вольт, т.к с выхода выпрямителя идет около 24 вольт.

При замыкании кнопки «Пуск» напряжение с выпрямителя начинает следовать на стабилитрон через сопротивление R6, затем стабилизированное напряжение идет на 16 вывод U1. Открывается транзистор S9012, которым управляет HCF4060BE. Напряжение через открытые переходы транзистора S9012 следует на обмотку реле. Контакты последнего замыкаются, и аккумулятор начинает заряжаться. Защитный диод VD8 (1N4007) шунтирует реле и защищает VT от скачка обратного напряжения, которое возникнет в момент обесточивания обмотки реле. VD5 не дает разряжаться аккумулятору при отключении сетевого напряжения. С размыканием контактов кнопки «Пуск» ничего не произойдет т.к питание идет через диод VD7 (1N4007), стабилитрон VD6 и гасящий резистор R6. Поэтому микросхема будет получать питание даже после отпускания кнопки.

Сменный типичный аккумулятор от электроинструмента собран из отдельных последовательно соединенных никель-кадмиевых Ni-Cd аккумуляторов, каждый по 1,2 вольта, т.о их 12 штук. Суммарное напряжение такой батареи будет около 14,4 вольта. Кроме того в блок аккумуляторов добавлен датчик температуры — SA1 он приклеен к одной из Ni-Cd батарей и плотно прилегает к ней. Один из выводов терморегулятора подключен к минусу аккумуляторной батареи. Второй вывод подсоединен к отдельному, третьему разъему.

При нажатии кнопки «Пуск» реле замыкает свои контакты, и начинается процесс заряда батареи. Загорается красный светодиод. Через час, реле своими контактами рвет цепь заряда аккумулятора шуроповерта. Загорается зеленый светодиод, а красный тухнет.

Термоконтакт отслеживает температуру батареи и разрывает цепь заряда, если температура выше 45°. Если такое случается раньше чем схема таймера отработает, это говорит об присутствии «эффекта памяти».

Типовые неисправности зарядного устройства шуруповерта

Со временем из-за износа кнопка «Пуск» глюченно срабатывает, а иногда и не работает совсем. Также в моей практике вылетал стабилитрон 1N4742A и микросхемы HCF4060BE. Если схема ЗУ исправна и не вызывают подозрения, а заряда не начинается, то необходимо проверить термовыключатель в аккумуляторном блоке, аккуратно разобрав его.

Зарядное устройство для аккумуляторов шуруповерта на КР142ЕН12А

Основой конструкции является регулируемый стабилизатор положительного напряжения. Он допускает работу с током нагрузки до 1,5А, которого вполне достаточно для заряда аккумуляторов.

Переменное напряжение величиной 13В, снимается с вторичной обмотки трансформатора, выпрямляется диодным мостом D3SBA40. На его выходе стоит фильтрующий конденсатор С1, который снижает пульсации выпрямленного напряжения. С выпрямителя постоянное напряжение поступает на интегральный стабилизатор, выходное напряжение, которого задается сопротивлением резистора R4 на уровне 14,1В (Зависит от типа АКБ шуруповерта). Датчиком тока зарядки является сопротивление R3, параллельно которому подсоединено подстроечное сопротивление R2, с помощью этого сопротивления задается уровень зарядного тока, который соответствует 0,1 от емкости аккумулятора. На первом этапе батарея заряжается стабильным током, затем, когда зарядный ток станет меньше величины тока ограничения, АКБ будет заряжаться более низким током до напряжения стабилизации DA1.

Датчиком зарядного тока для светодиода HL1 является VD2. В этом случае HL1 будет индицировать ток номиналом до 50 миллиампер. Если в качестве датчика тока использовать R3, то светодиод погаснет при токе 0,6А, что было бы слишком рано. Аккумулятор не успел бы зарядиться. Это устройство можно использовать и для шестивольтовых аккумуляторов.

Зарядное устройство для никелевых батарей шуруповерта на микроконтроллере

Радиолюбительская конструкция используется для разряда и заряда NiCd аккумуляторов емкостью 1,2 А*ч. По своей сути — это усовершенствованное типовое ЗУ шуруповерта, в которое внедрена схема контролирующая доразряд и последующий заряд батареи. После подключения батареи к ЗУ стартует процесс разряд батареи током 120 мА до напряжения 10 В, затем аккумулятор начинает заряжаться, током400 мА. Прекращается заряд по достижении напряжения на аккумуляторе шуроповерта 15.2 В или по таймеру через 3.5 ч. (запрограмировано в прошивке МК).

При разряде постоянно светится HL1. В процессе заряда горит светодиод HL2 и мигает с интервалом раз в 5 секунд HL1. После окончания заряда АКБ по достижению верхнего уровня напряжения начинает часто мигать HL1 (2 мигания с паузой 600 мс). Если заряд прекратился по таймеру, то HL1 мигает раз в 600 мс. Если в процессе заряда исчезло питающее напряжение, то таймер стопорится. А микроконтроллер PIC12F675 получает питание от аккумулятора, через диод, внутри транзистора VT2. Пршивка к МК по ссылке выше.

Схема, устройство, ремонт

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием. Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол9quot;.

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Печатная плата зарядного устройства (CDQ-F06K1).

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь .

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления — микросхема HCF4060BE. которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда — около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 — 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск9quot; микросхема U1 HCF4060BE обесточена — отключена от источника питания. При нажатии кнопки «Пуск9quot; напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012. которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск9quot; разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск9quot; электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 — 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован .

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

На графике показано, как во время заряда меняется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -&#&16;V. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством. например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск9quot; начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также могут иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE).

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем в диагностике неисправности и ремонте даже у начинающих радиолюбителей .

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Часто родное зарядное устройство, входящее в комплект шуруповерта, работает медленно, долго заряжая аккумулятор. Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Несмотря на то, что в комплект входит обычно два аккумулятора (один установлен в рукоятку инструмента и в работе, а другой подключен к зарядному устройству и находится в процессе зарядки), часто владельцы не могут приспособиться к рабочему циклу аккумуляторов. Тогда имеет смысл изготовить зарядное устройство своими руками и зарядка станет удобнее.

Виды батарей

Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными. Никель-кадмиевые (Ni-Cd) батареи являются очень хорошим источником энергии, способны отдавать большую мощность. Однако, по экологическим причинам их производство прекращено и они будут встречаться все реже и реже. Сейчас всюду их вытеснили литий-ионные аккумуляторы.

Сернокислотные (Pb) свинцовые гелевые аккумуляторы имеют неплохие характеристики, но утяжеляют инструмент и поэтому не пользуются особой популярностью, несмотря на относительную дешевизну. Поскольку они гелевые (раствор серной кислоты загущается силикатом натрия), то никаких пробок в них нет, электролит из них не вытекает и ими можно пользоваться в любом положении. (Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.)

Литий-ионные аккумуляторы (Li-ion) являются сейчас наиболее перспективными и продвигаемыми в технике и на рынке. Их особенностью является полная герметичность ячейки. Они имеют весьма высокую удельную мощность, безопасны в обращении (благодаря встроенному контроллеру заряда!), выгодно утилизируются, являются наиболее экологически чистыми, имеют малый вес. В шуруповертах в настоящее время применяются очень часто.

Режимы заряда

Номинальное напряжение Ni-Cd ячейки 1.2 В. Никель-кадмиевый аккумулятор заряжается током от 0.1 до 1.0 номинальной емкости. Это означает, что аккумулятор емкостью 5 амперчасов можно заряжать током от 0.5 до 5 А.

Заряд сернокислотных аккумуляторов хорошо знаком всем людям, держащим в руках шуруповерт, ведь практически каждый их них еще и автолюбитель. Номинальное напряжение ячейки Pb-PbO2 составляет 2.0 В, а ток зарядки свинцового сернокислотного аккумулятора всегда 0.1 C (доля тока от номинальной емкости, см. выше).

Литий-ионная ячейка имеет номинальное напряжение 3.3 В. Ток заряда литий-ионного аккумулятора, 0.1 C. При комнатной температуре этот ток можно плавно повышать до 1.0 С – это быстрый заряд. Однако, это годится только для тех батарей, которые не были переразряжены. При заряде литий-ионных батарей следует точно соблюдать напряжение. Заряд производится до 4.2 В точно. Превышение резко снижает срок службы, понижение – уменьшает емкость. При зарядке следует следить за температурой. Теплый аккумулятор следует либо ограничить током до 0.1 С, либо отключить до остывания.

ВНИМАНИЕ! При перегреве литий-ионного аккумулятора при зарядке свыше 60 градусов Цельсия возможен его взрыв и возгорание! Не следует слишком полагаться на встроенную электронику безопасности (контроллер заряда).

При заряде литиевой батареи, контрольное напряжение (напряжение окончания заряда) образует приблизительный ряд (точные напряжения зависят от конкретной технологии и указаны в паспорте на батарею и на ее корпусе):

Напряжение заряда следует контролировать мультиметром или схемой с компаратором напряжения, настроенным точно на применяемую батарею. Но для “электронщиков начального уровня” реально можно предложить только простую и надежную схему, описанную в следующем разделе.

Зарядное устройство + (Видео)

Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных. Шуруповерты питаются от аккумуляторов с разными напряжениями 12 вольт или 18 вольт. Это неважно, главный параметр зарядного устройства для аккумуляторов – ток заряда. Напряжение зарядного устройства при отключенной нагрузке всегда выше номинального, оно падает до нормы при подключении батареи при заряде. В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания.

Зарядное устройство представляет собой генератор тока на мощном составном транзисторе VT2, который питается от выпрямительного мостика, подключенного к понижающему трансформатору с достаточным выходным напряжением (см. таблицу в предыдущем разделе).

Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Иначе он может сгореть. Ток заряда выставляется регулировкой резистора R1 при подключенном аккумуляторе. Он остается постоянным в процессе заряда (тем постоянней, чем выше напряжение от трансформатора. Примечание: напряжение от трансформатора не должно превышать 27 В).

Резистор R3 (не менее 2 Вт 1 Ом) ограничивает максимальный ток, а светодиод VD6 горит, пока идет заряд. К концу заряда, свечение светодиода уменьшается и он гаснет. Тем не менее, не забывайте про точный контроль напряжения литий-ионных аккумуляторов и их температуру!

Все детали в описанной схеме монтируются на печатной плате из фольгированного текстолита. Вместо диодов, указанных в схеме, можно взять русские диоды КД202 или Д242, они довольно доступны в старом электронном ломе. Располагать детали надо так, чтобы на плате оказалось как можно меньше пересечений, в идеале ни одного. Не следует увлекаться высокой плотностью монтажа, ведь вы собираете не смартфон. Распаивать детали вам будет значительно легче, если между ними останется по 3-5 мм.

Транзистор должен быть установлен на теплоотводе достаточной пощади (20-50 см.кв). Все части зарядного устройства лучше всего смонтировать в удобный самодельный корпус. Это будет самым практичным решением, в работе вам ничто не будет мешать. Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Поэтому лучше сделать так: взять старое или неисправное зарядное устройство у знакомых, подходящее к вашей модели аккумулятора, и подвергнуть его переделке.

  • Вскрыть корпус старого зарядного устройства.
  • Удалить из него всю бывшую начинку.
  • Подобрать следующие радиоэлементы:

Шуруповерт есть в каждом доме, где выполняются элементарный ремонт. Любому электроприбору требуется стационарное электричество или блок питания. Поскольку наиболее популярными являются аккумуляторные шуруповерты — требуется еще и зарядник.

Он идет в комплекте с дрелью, и как любой электроприбор может выйти из строя. Чтобы вы не столкнулись с проблемой неработающего оборудования, изучим общее описание зарядных устройств для шуруповерта.

Виды зарядников

Аналоговые со встроенным блоком питания

Их популярность обусловлена низкой стоимостью. Если дрель (шуруповерт) не предназначена для профессионального использования, продолжительность работы — не самый первый вопрос. Задача простого зарядника — получить постоянное напряжение с достаточной для зарядки аккумулятора токовой нагрузкой.

Важно! Для начала заряда, напряжение на выходе блока питания должно быть выше номинального значения аккумулятора.

Работает такая зарядка по принципу обычного стабилизатора. Для примера рассмотрим схему зарядника для аккумулятора на 9-11 вольт. Тип батарей не имеет значения.

Такой блок питания (он же зарядник ) можно собрать своими руками. Спаять схему можно на универсальной монтажной плате. Для рассеивания тепла микросхемы стабилизатора, достаточно медного радиатора площадью 20 см².

Для информации: Стабилизаторы такого типа работают по компенсационному принципу — лишняя энергия отводится в виде тепла.

Входной трансформатор (Тр1) понижает переменное напряжение 220 вольт до значения 20 вольт. Мощность трансформатора рассчитывается по току и напряжению на выходе зарядного устройства. Далее переменный ток выпрямляется при помощи диодного моста VD1. Обычно производители (особенно китайские) используют сборку диодов Шоттки.

После выпрямления ток будет пульсирующим, это вредно для нормального функционирования схемы. Пульсации сглаживаются фильтрующим электролитическим конденсатором (С1).

Роль стабилизатора выполняет микросхема КР142ЕН, на радиолюбительском слэнге — «кренка». Для получения напряжения 12 вольт, индекс микросхемы должен быть 8Б. Управление собрано на транзисторе (VT2) и подстроечных резисторах.

Автоматика на подобных устройствах не предусмотрена, время зарядки аккумулятора определяет пользователь. Для контроля заряда собрана несложная схема на транзисторе (VT1) и диоде (VD2). При достижении напряжения заряда, индикатор (светодиод HL1) гаснет.

Более продвинутые системы имеют в своем составе коммутатор, отключающий напряжение по окончанию заряда в виде электронного ключа.

В комплекте с шуруповертами эконом класса (произведенными в Поднебесной), встречаются зарядники и попроще. Немудрено, что процент выхода из строя довольно высок. У владельца появляется перспектива остаться с относительно новым неработоспособным шуруповертом. По приложенной схеме вы сможете собрать зарядное устройство для шуруповерта своими руками, которое прослужит дольше фабричного. Меняя трансформатор и стабилизатор, вы сможете подобрать необходимое значение для вашего аккумулятора.

Аналоговые с внешним блоком питания

Сама по себе схема зарядного устройства примитивна, насколько это возможно. В комплект входит сетевой блок питания, и собственно зарядник, в корпусе фиксаторе модуля аккумуляторных батарей.

Блок питания рассматривать нет смысла, его схема стандартная – трансформатор, диодный мост, конденсаторный фильтр и выпрямитель. На выходе, как правило, 18 вольт, для классических 14 вольтовых аккумуляторных батарей.

Плата управления зарядом занимает площадь спичечного коробка:

Как правило, никакого теплоотвода на таких сборках нет, разве что нагрузочный резистор большой мощности. Поэтому подобные устройства часто выходят из строя. Возникает вопрос: как зарядить шуруповерт без зарядного устройства?

Решение простое для человека, умеющего держать в руках паяльник.

  • Первое условие – наличие источника питания. Если «родной» блок исправен, достаточно собрать несложную схему управления. В случае выхода из строя всего комплекта – можно использовать блок питания для ноутбука. На выходе требуемые 18 вольт. Мощности такого источника хватит за глаза для любого комплекта аккумуляторов
  • Второе условие – элементарные навыки сборки электросхем. Детали самые доступные, можно выпаять из старой бытовой техники, или купить на радиорынке буквально за копейки.

Принципиальная схема блока управления:

На входе стабилитрон на 18 вольт. Схема управления на транзисторе KT817, усиление обеспечивает мощный транзистор КТ818. Его необходимо снабдить радиатором. В зависимости от тока заряда, не нем может рассеиваться до 10 Вт, поэтому потребуется радиатор площадью 30-40 см².

Именно экономия «на спичках» делает китайские зарядники такими ненадежными. Подстроечник 1 КОм необходим для точной установки тока заряда. Резистор 4,7 Ом, стоящий на выходе цепи, также должен рассеивать достаточно тепла. Мощность не менее 5 Вт. Об окончании заряда оповестит светодиодный индикатор, он погаснет.

Собранную схему легко разместить в корпус штатной зарядки. Радиатор транзистора выносить не обязательно, главное обеспечить циркуляцию воздуха внутри корпуса.

Экономия заключается в том, что блок питания от ноутбука, по прежнему используется по назначению.

Важно! Общий недостаток аналоговых зарядных устройств – долгий процесс заряда.

Для бытового шуруповерта это не страшно. Оставил заряжаться на ночь перед началом работ – на сборку шкафа хватит. Среднее время заряда китайской аккумуляторной дрели – 3-5 часов.

Импульсные

Переходим к тяжелому вооружению. Профессиональные шуруповерты используются интенсивно, и простой в работе по причине разряженного аккумулятора недопустим. Ценовой вопрос опускаем, любая серьезная техника стоит дорого. Тем более что в комплекте обычно два аккумулятора. Пока один в работе – второй на подзарядке.

Импульсный блок питания в комплекте с интеллектуальной схемой управления зарядом, заполняет батарею на 100% буквально за 1 час. Можно собрать и аналоговый зарядник с такой же мощностью. Но его вес и размеры будут сопоставимы с шуруповертом.

Всех этих недостатков лишены импульсные зарядники. Компактный размер, высокие токи заряда, продуманная защита. Проблема одна: сложность схемы, и как следствие – высокая цена.Тем не менее, можно собрать и такое устройство. Экономия минимум в 2 раза.

Предлагаем вариант для «продвинутых» никель кадмиевых аккумуляторов, снабженных третьим сигнальным контактом.

Схема собрана на популярном контроллере MAX713. Предложенная реализация рассчитана на входное напряжение 25 вольт постоянного тока. Собрать такой источник питания не сложно, поэтому его схему опускаем.

Зарядное устройство интеллектуально. После проверки уровня напряжения, запускается режим ускоренного разряда (для предотвращения эффекта памяти). Заряд происходит за 1-1,15 часа. Особенностью схемы является возможность выбора напряжения заряда и типа батарей. В описании на рисунке указано положение перемычек и значение резистора R19 для смены режимов.

Если фирменная зарядка профессионального шуруповерта выйдет из строя – вы сможете сэкономить на ремонте, собрав схему своими руками.

Блок питания для шуруповерта – схема и порядок сборки

Многим знакома ситуация: шуруповерт жив-здоров, а блок аккумуляторов приказал долго жить. Есть масса способов восстановления АКБ, но не всем нравится возиться с токсичными элементами.

Как использовать электроприбор

Ответ прост: подключить внешний блок питания. Если у вас типичный китайский прибор с аккумуляторами 14,4 вольта – можно использовать автомобильный аккумулятор (удобно для работы в гараже). А можно подобрать трансформатор с выходом 15-17 вольт, и собрать полноценный БП.

Набор деталей самый недорогой. Выпрямитель (диодный мост) и термостат для защиты от перегрева. Остальные элементы имеют сервисную задачу – индикация входного и выходного напряжения. Стабилизатор не требуется – электродвигатель вашего шуруповерта не такой требовательный, как аккумулятор.

Как видите, оживить аккумуляторную дрель не так уж и сложно. Главное не принимать поспешного решения: «выбросить и купить новый электроприбор»

Если у вас полностью вышли из строя аккумуляторы шуруповерта, то вы можете переделать его на сетевой как сделать такой блок питания смотрите в этом видео

Так выглядит схема переделки зарядного устройства.

Поделиться с друзьями:

studvesna73.ru

Зарядка для шуруповерта 12 вольт своими руками — sovetskyfilm.ru

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Наперекор всем стереотипам: девушка с редким генетическим расстройством покоряет мир моды Эту девушку зовут Мелани Гайдос, и она ворвалась в мир моды стремительно, эпатируя, воодушевляя и разрушая глупые стереотипы.

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Неожиданно: мужья хотят, чтобы их жены делали чаще эти 17 вещей Если вы хотите, чтобы ваши отношения стали счастливее, вам стоит почаще делать вещи из этого простого списка.

Зарядное устройство для шуруповёрта на МС33340.

Автор — МР42В (или просто Захар).Опубликовано 23.10.2008.

Однажды любимый крутитель шурупов METABO попрощался со мной похрустев на последок планетарным редуктором.

Правда до этого момента он безотказно отработал примерно пять лет. Пришлось идти в магазин и пробовать подобрать новый инструмент для кручения. Глаза естественно разбежались в разные стороны от обилия моделей. Что нужно от шуруповёрта я уже знал. поэтому выбор был остановлен на этой модели Packard Spence (Паккард Спэнс). Всеми параметрами он мне полностью подходил и в руке лежал очень удобно.Шуроповерт PSCD 14 АD:

Неприятности начались при первой попытке применения шуруповёрта. Добросовестно прозаряжав его три часа (как написано в инструкции) получил время кручения шурупов около пяти минут. Спешить было некуда, поставил снова заряжаться.По прошествии 16 часов попробовал снова покрутить шурупы, на этот раз время кручения возросло аж до 15 минут. Подумалось что надули в магазине (подсунули брак). Поставил заряжать в третий раз, применив в этом случае свои познания в области заряда аккумуляторов (аккумулятор должен получить 140 % своей ёмкости). Отложил в сторону штатный зарядник и подключил автомобильный, установил ток заряда 150 ма. Через 16 часов попробовал снова покрутить шурупы, на этот раз шуруповёрт добросовестно отработал более 50 минут. Вот тут стало понятно что штатный зарядник не работает.Изнутри он выглядит так (схема неправильная). Эта-же схема плавает в интернете и зовётся «зарядник для Skil». Это не моя ошибка, так собрали на заводе.

Измерил ток заряда, получилось около 50мA. Проверил элементы, все были исправны. Схема оказалась зарядником SKIL, SPARKY и т.д и т.п моделей.

Пробовал спросить на форуме Кота как она (схема) работает но ответа не получил. Кстати правильно схема выглядит вот так:

Но это выяснилось намного позже.Процесс поиска приемлемой схемы занял некоторое время. Хотелось настоящий контроллер заряда.МАХ был отброшен по причине стоимости. ТЕА 1104 по причине дефицитности. Дискретные схемы из-за размеров. Выбор пал на МС33340 от Мотороллы.

Дальше всё обыденно и рутинно. Развёл плату под свой размер.

При первой попытке заряда вылезли некоторые нюансы. Посмотрим на картинку из даташита:

Обратите внимание на формулы внизу рисунка.Из-за некоторого несоответствия мой контроллер заряжал аккумулятор током 170 ма и только 15 минут. После чего прекращал заряд. Победить окончательно помогли заграничные камрады. Они придумали калькулятор для расчёта. Нумерация резисторов делителя Vsem соответствует рисунку, на котором изображён 78L12. В моём случае:

Часто родное зарядное устройство, входящее в комплект шуруповерта, работает медленно, долго заряжая аккумулятор. Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Несмотря на то, что в комплект входит обычно два аккумулятора (один установлен в рукоятку инструмента и в работе, а другой подключен к зарядному устройству и находится в процессе зарядки), часто владельцы не могут приспособиться к рабочему циклу аккумуляторов. Тогда имеет смысл изготовить зарядное устройство своими руками и зарядка станет удобнее.

Виды батарей

Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными. Никель-кадмиевые (Ni-Cd) батареи являются очень хорошим источником энергии, способны отдавать большую мощность. Однако, по экологическим причинам их производство прекращено и они будут встречаться все реже и реже. Сейчас всюду их вытеснили литий-ионные аккумуляторы.

Сернокислотные (Pb) свинцовые гелевые аккумуляторы имеют неплохие характеристики, но утяжеляют инструмент и поэтому не пользуются особой популярностью, несмотря на относительную дешевизну. Поскольку они гелевые (раствор серной кислоты загущается силикатом натрия), то никаких пробок в них нет, электролит из них не вытекает и ими можно пользоваться в любом положении. (Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.)

Литий-ионные аккумуляторы (Li-ion) являются сейчас наиболее перспективными и продвигаемыми в технике и на рынке. Их особенностью является полная герметичность ячейки. Они имеют весьма высокую удельную мощность, безопасны в обращении (благодаря встроенному контроллеру заряда!), выгодно утилизируются, являются наиболее экологически чистыми, имеют малый вес. В шуруповертах в настоящее время применяются очень часто.

Режимы заряда

Номинальное напряжение Ni-Cd ячейки 1.2 В. Никель-кадмиевый аккумулятор заряжается током от 0.1 до 1.0 номинальной емкости. Это означает, что аккумулятор емкостью 5 амперчасов можно заряжать током от 0.5 до 5 А.

Заряд сернокислотных аккумуляторов хорошо знаком всем людям, держащим в руках шуруповерт, ведь практически каждый их них еще и автолюбитель. Номинальное напряжение ячейки Pb-PbO2 составляет 2.0 В, а ток зарядки свинцового сернокислотного аккумулятора всегда 0.1 C (доля тока от номинальной емкости, см. выше).

Литий-ионная ячейка имеет номинальное напряжение 3.3 В. Ток заряда литий-ионного аккумулятора, 0.1 C. При комнатной температуре этот ток можно плавно повышать до 1.0 С – это быстрый заряд. Однако, это годится только для тех батарей, которые не были переразряжены. При заряде литий-ионных батарей следует точно соблюдать напряжение. Заряд производится до 4.2 В точно. Превышение резко снижает срок службы, понижение – уменьшает емкость. При зарядке следует следить за температурой. Теплый аккумулятор следует либо ограничить током до 0.1 С, либо отключить до остывания.

ВНИМАНИЕ! При перегреве литий-ионного аккумулятора при зарядке свыше 60 градусов Цельсия возможен его взрыв и возгорание! Не следует слишком полагаться на встроенную электронику безопасности (контроллер заряда).

При заряде литиевой батареи, контрольное напряжение (напряжение окончания заряда) образует приблизительный ряд (точные напряжения зависят от конкретной технологии и указаны в паспорте на батарею и на ее корпусе):

Напряжение заряда следует контролировать мультиметром или схемой с компаратором напряжения, настроенным точно на применяемую батарею. Но для “электронщиков начального уровня” реально можно предложить только простую и надежную схему, описанную в следующем разделе.

Зарядное устройство + (Видео)

Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных. Шуруповерты питаются от аккумуляторов с разными напряжениями 12 вольт или 18 вольт. Это неважно, главный параметр зарядного устройства для аккумуляторов – ток заряда. Напряжение зарядного устройства при отключенной нагрузке всегда выше номинального, оно падает до нормы при подключении батареи при заряде. В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания.

Зарядное устройство представляет собой генератор тока на мощном составном транзисторе VT2, который питается от выпрямительного мостика, подключенного к понижающему трансформатору с достаточным выходным напряжением (см. таблицу в предыдущем разделе).

Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Иначе он может сгореть. Ток заряда выставляется регулировкой резистора R1 при подключенном аккумуляторе. Он остается постоянным в процессе заряда (тем постоянней, чем выше напряжение от трансформатора. Примечание: напряжение от трансформатора не должно превышать 27 В).

Резистор R3 (не менее 2 Вт 1 Ом) ограничивает максимальный ток, а светодиод VD6 горит, пока идет заряд. К концу заряда, свечение светодиода уменьшается и он гаснет. Тем не менее, не забывайте про точный контроль напряжения литий-ионных аккумуляторов и их температуру!

Все детали в описанной схеме монтируются на печатной плате из фольгированного текстолита. Вместо диодов, указанных в схеме, можно взять русские диоды КД202 или Д242, они довольно доступны в старом электронном ломе. Располагать детали надо так, чтобы на плате оказалось как можно меньше пересечений, в идеале ни одного. Не следует увлекаться высокой плотностью монтажа, ведь вы собираете не смартфон. Распаивать детали вам будет значительно легче, если между ними останется по 3-5 мм.

Транзистор должен быть установлен на теплоотводе достаточной пощади (20-50 см.кв). Все части зарядного устройства лучше всего смонтировать в удобный самодельный корпус. Это будет самым практичным решением, в работе вам ничто не будет мешать. Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Поэтому лучше сделать так: взять старое или неисправное зарядное устройство у знакомых, подходящее к вашей модели аккумулятора, и подвергнуть его переделке.

  • Вскрыть корпус старого зарядного устройства.
  • Удалить из него всю бывшую начинку.
  • Подобрать следующие радиоэлементы:

Шуруповерт есть в каждом доме, где выполняются элементарный ремонт. Любому электроприбору требуется стационарное электричество или блок питания. Поскольку наиболее популярными являются аккумуляторные шуруповерты — требуется еще и зарядник.

Он идет в комплекте с дрелью, и как любой электроприбор может выйти из строя. Чтобы вы не столкнулись с проблемой неработающего оборудования, изучим общее описание зарядных устройств для шуруповерта.

Виды зарядников

Аналоговые со встроенным блоком питания

Их популярность обусловлена низкой стоимостью. Если дрель (шуруповерт) не предназначена для профессионального использования, продолжительность работы — не самый первый вопрос. Задача простого зарядника — получить постоянное напряжение с достаточной для зарядки аккумулятора токовой нагрузкой.

Важно! Для начала заряда, напряжение на выходе блока питания должно быть выше номинального значения аккумулятора.

Работает такая зарядка по принципу обычного стабилизатора. Для примера рассмотрим схему зарядника для аккумулятора на 9-11 вольт. Тип батарей не имеет значения.

Такой блок питания (он же зарядник ) можно собрать своими руками. Спаять схему можно на универсальной монтажной плате. Для рассеивания тепла микросхемы стабилизатора, достаточно медного радиатора площадью 20 см².

Для информации: Стабилизаторы такого типа работают по компенсационному принципу — лишняя энергия отводится в виде тепла.

Входной трансформатор (Тр1) понижает переменное напряжение 220 вольт до значения 20 вольт. Мощность трансформатора рассчитывается по току и напряжению на выходе зарядного устройства. Далее переменный ток выпрямляется при помощи диодного моста VD1. Обычно производители (особенно китайские) используют сборку диодов Шоттки.

После выпрямления ток будет пульсирующим, это вредно для нормального функционирования схемы. Пульсации сглаживаются фильтрующим электролитическим конденсатором (С1).

Роль стабилизатора выполняет микросхема КР142ЕН, на радиолюбительском слэнге — «кренка». Для получения напряжения 12 вольт, индекс микросхемы должен быть 8Б. Управление собрано на транзисторе (VT2) и подстроечных резисторах.

Автоматика на подобных устройствах не предусмотрена, время зарядки аккумулятора определяет пользователь. Для контроля заряда собрана несложная схема на транзисторе (VT1) и диоде (VD2). При достижении напряжения заряда, индикатор (светодиод HL1) гаснет.

Более продвинутые системы имеют в своем составе коммутатор, отключающий напряжение по окончанию заряда в виде электронного ключа.

В комплекте с шуруповертами эконом класса (произведенными в Поднебесной), встречаются зарядники и попроще. Немудрено, что процент выхода из строя довольно высок. У владельца появляется перспектива остаться с относительно новым неработоспособным шуруповертом. По приложенной схеме вы сможете собрать зарядное устройство для шуруповерта своими руками, которое прослужит дольше фабричного. Меняя трансформатор и стабилизатор, вы сможете подобрать необходимое значение для вашего аккумулятора.

Аналоговые с внешним блоком питания

Сама по себе схема зарядного устройства примитивна, насколько это возможно. В комплект входит сетевой блок питания, и собственно зарядник, в корпусе фиксаторе модуля аккумуляторных батарей.

Блок питания рассматривать нет смысла, его схема стандартная – трансформатор, диодный мост, конденсаторный фильтр и выпрямитель. На выходе, как правило, 18 вольт, для классических 14 вольтовых аккумуляторных батарей.

Плата управления зарядом занимает площадь спичечного коробка:

Как правило, никакого теплоотвода на таких сборках нет, разве что нагрузочный резистор большой мощности. Поэтому подобные устройства часто выходят из строя. Возникает вопрос: как зарядить шуруповерт без зарядного устройства?

Решение простое для человека, умеющего держать в руках паяльник.

  • Первое условие – наличие источника питания. Если «родной» блок исправен, достаточно собрать несложную схему управления. В случае выхода из строя всего комплекта – можно использовать блок питания для ноутбука. На выходе требуемые 18 вольт. Мощности такого источника хватит за глаза для любого комплекта аккумуляторов
  • Второе условие – элементарные навыки сборки электросхем. Детали самые доступные, можно выпаять из старой бытовой техники, или купить на радиорынке буквально за копейки.

Принципиальная схема блока управления:

На входе стабилитрон на 18 вольт. Схема управления на транзисторе KT817, усиление обеспечивает мощный транзистор КТ818. Его необходимо снабдить радиатором. В зависимости от тока заряда, не нем может рассеиваться до 10 Вт, поэтому потребуется радиатор площадью 30-40 см².

Именно экономия «на спичках» делает китайские зарядники такими ненадежными. Подстроечник 1 КОм необходим для точной установки тока заряда. Резистор 4,7 Ом, стоящий на выходе цепи, также должен рассеивать достаточно тепла. Мощность не менее 5 Вт. Об окончании заряда оповестит светодиодный индикатор, он погаснет.

Собранную схему легко разместить в корпус штатной зарядки. Радиатор транзистора выносить не обязательно, главное обеспечить циркуляцию воздуха внутри корпуса.

Экономия заключается в том, что блок питания от ноутбука, по прежнему используется по назначению.

Важно! Общий недостаток аналоговых зарядных устройств – долгий процесс заряда.

Для бытового шуруповерта это не страшно. Оставил заряжаться на ночь перед началом работ – на сборку шкафа хватит. Среднее время заряда китайской аккумуляторной дрели – 3-5 часов.

Импульсные

Переходим к тяжелому вооружению. Профессиональные шуруповерты используются интенсивно, и простой в работе по причине разряженного аккумулятора недопустим. Ценовой вопрос опускаем, любая серьезная техника стоит дорого. Тем более что в комплекте обычно два аккумулятора. Пока один в работе – второй на подзарядке.

Импульсный блок питания в комплекте с интеллектуальной схемой управления зарядом, заполняет батарею на 100% буквально за 1 час. Можно собрать и аналоговый зарядник с такой же мощностью. Но его вес и размеры будут сопоставимы с шуруповертом.

Всех этих недостатков лишены импульсные зарядники. Компактный размер, высокие токи заряда, продуманная защита. Проблема одна: сложность схемы, и как следствие – высокая цена.Тем не менее, можно собрать и такое устройство. Экономия минимум в 2 раза.

Предлагаем вариант для «продвинутых» никель кадмиевых аккумуляторов, снабженных третьим сигнальным контактом.

Схема собрана на популярном контроллере MAX713. Предложенная реализация рассчитана на входное напряжение 25 вольт постоянного тока. Собрать такой источник питания не сложно, поэтому его схему опускаем.

Зарядное устройство интеллектуально. После проверки уровня напряжения, запускается режим ускоренного разряда (для предотвращения эффекта памяти). Заряд происходит за 1-1,15 часа. Особенностью схемы является возможность выбора напряжения заряда и типа батарей. В описании на рисунке указано положение перемычек и значение резистора R19 для смены режимов.

Если фирменная зарядка профессионального шуруповерта выйдет из строя – вы сможете сэкономить на ремонте, собрав схему своими руками.

Блок питания для шуруповерта – схема и порядок сборки

Многим знакома ситуация: шуруповерт жив-здоров, а блок аккумуляторов приказал долго жить. Есть масса способов восстановления АКБ, но не всем нравится возиться с токсичными элементами.

Как использовать электроприбор

Ответ прост: подключить внешний блок питания. Если у вас типичный китайский прибор с аккумуляторами 14,4 вольта – можно использовать автомобильный аккумулятор (удобно для работы в гараже). А можно подобрать трансформатор с выходом 15-17 вольт, и собрать полноценный БП.

Набор деталей самый недорогой. Выпрямитель (диодный мост) и термостат для защиты от перегрева. Остальные элементы имеют сервисную задачу – индикация входного и выходного напряжения. Стабилизатор не требуется – электродвигатель вашего шуруповерта не такой требовательный, как аккумулятор.

Как видите, оживить аккумуляторную дрель не так уж и сложно. Главное не принимать поспешного решения: «выбросить и купить новый электроприбор»

Если у вас полностью вышли из строя аккумуляторы шуруповерта, то вы можете переделать его на сетевой как сделать такой блок питания смотрите в этом видео

Так выглядит схема переделки зарядного устройства.

Поделиться с друзьями:

Обычный шуруповерт может иметь аккумуляторы различного типа, все они отличаются по характеристикам. Соответственно и зарядки к ним нужны разные — для свинцовых, литиевых, никелевых аккумуляторов и других. Перед тем как собирать или чинить зарядное устройство, необходимо обязательно определиться с его типом, условиями использования. Это важно, так как некоторые шуруповерты нельзя использовать при низких температурах, другие не выдерживают длительной эксплуатации. Вопрос, как сделать зарядное устройство для шуруповерта своими руками, стоит не так часто. Сегодня в продаже можно найти разнообразные варианты зарядок, предназначенных как для конкретных моделей, так и универсальных. Но при работе на даче или строительной площадке, когда ближайший магазин далеко, а инструмент нужен сейчас, может потребоваться собрать самому зарядное устройство. Схема сборки несложная и ниже мы выложим несколько вариантов.

Зарядное устройство для шуруповёрта на микроконтроллере

Схема собранна для корректной зарядки аккумуляторов шуруповёрта, вся схема умещается в штатный корпус, имеется световая и звуковая сигнализация, начала и окончания заряда, схема собрана на основе PIC12F629.

Рекомендуем: Схема зарядного устройства для аккумулятора

После включения включаются и гаснут оба светодиода, при этом звучит сигнал, (тест индикации и звука). Затем начинает мигать красный светодиод, когда светодиод горит идёт зарядка, когда погашен контроль напряжения на аккумуляторе.

После достижения напряжения полного заряда на аккумуляторе,перестает мигать красный светодиод и включается зелёный, при этом звучит сигнал, сообщающий о том что зарядка окончена. Уровень напряжения полного заряда устанавливаетя переменным резистором.

Напряжение, которое должно быть на полностью зараженном аккумуляторе, устанавливается переменным резистором. Входное напряжение = напряжение которое должно быть на полностью зараженном аккумуляторе +1 вольт. Транзистор любой полевой с P-каналом, подходящий по току.

Что необходимо сделать для зарядки 14 в аккумуляторов? Подать на вход 15-16 вольт, и установить переменным резистором порог срабатывания отключения зарядки при 14,4 вольт.

Зарядка происходит импульсами, импульсы зарядки индицируются светодиодом «заряд», в промежутках между импульсами происходит контроль напряжения на аккумуляторе, по достижение нужного напряжение подаётся звуковой сигнал, и начинает мигать светодиод «заряд окончен».

Рекомендуем: Резервная USB батарейка

Зарядное устройство для дрели-шуруповерта

Схема выдает напряжение 18 вольт. Если заряжать аккумуляторы на 14.4 вольт, нужно будет подобрать резистором зарядный ток.

Схема импульсного разрядно-зарядного устройства Ni-Cd аккумуляторов для шуруповёрта

Зарядное устройство представляет собой трансформаторный, не стабилизированный источник питания, ограничение тока заряда осуществляется за счет насыщения трансформатора. Напряжение на выходе трансформатора примерно 14V.

Очень простое ЗУ для шуруповерта

А это вариант схемы простейшего зарядного устройства для шуруповерта, когда не хочется усложнять конструкцию лишними радиоэлементами. Те, кто хоть немного разбираются соберут данную схему очень быстро. По крайней мере данное зарядное устройство более простое и удобное в отличии от штатных. Естественно, что речь идет о дешевых моделях. В этой схеме регулировка зарядного тока АКБ производится резистором R10.

Related Posts

В этой статье я решил представить новинки этого года, речь пойдет о технологический изобретениях, которые уже можно найти на рынке. В основном все устройства представленные в данной статье связаны с […]

USB устройство для зарядки аккумуляторов с индикацией окончания заряда — схема для самостоятельной сборки и описание работы конструкции. Существует множество конструкций зарядных устройств от простейших, содержащих выпрямительный диод и токоограничительный […]

Недавно на одном китайском сайте встретилось интересное устройство, которое работает как очень мощный Power Bank на 20000mAh, и как стартер для автомобиля, своеобразное автономное пусковое, если сел его аккумулятор 12 […]

В зимний период для многих владельцев автомашин становится очень актуальным вопрос: как уменьшить расход топлива зимой? Но для того, чтобы грамотно ответить на возникший вопрос, необходимо разобраться в причинах его […]

Внимание, только СЕГОДНЯ!

sovetskyfilm.ru

Зарядное устройство 12.6В 3А, или продолжение разговора на тему переделки батареи шуруповерта

В конце прошлого года я публиковал пару обзоров на тему переделки батарей шуруповертов. Сегодня я расскажу о альтернативном варианте заряда переделанной батареи при помощи готового зарядного устройства. В общем как всегда, осмотр, разборка, схемы, тесты.

В прошлый раз я предлагал использовать для заряда старое зарядное с отдельной платой преобразователя. Вариант в общем то неплохой, но мне стали задавать вопросы, а что делать если старое зарядное разбито, поломано, съела кошка. И вот я случайно наткнулся в одном из магазинов на вариант зарядного устройства, которое подойдет для батарей 3S, т.е. 12.6 Вольта. Так как такой вариант является одним из самых распространенных при переделке старых шуруповертов, то я решил заказать его для обзора.

Упаковка весьма аскетичная, впрочем как и надпись, указывающая напряжение и ток заряда.

Комплект поставки весьма прост, кабель и собственно зарядное устройство.

Кабель в принципе неплохой, вот только вилка подкачала, варианты — резать, менять или искать переходник.

Зарядное устройство выполнено в формате блока питания, довольно увесистое, корпус прочный.

На одном из торцов корпуса расположен двухконтактный сетевой разъем, на второй стороне кабель с привычным 5.5/2.1мм штекером. Длина кабеля около 1 метра.

Так как это именно зарядное устройство, а не блок питания, которым вы заряжаете свой смартфон/планшет, то здесь присутствует индикатор окончания заряда. Светит правда он не очень ярко, при ярком солнце его не будет заметно, как например и в свете вспышки.

Снизу присутствует наклейка с указанием характеристик, ничего нового, помимо того что было указано на упаковке, я не увидел.

Как я выше писал, корпус довольно прочный, но против молотка и ножа он устоять не смог, а других способов разобрать данное изделие нет.

Плата внутри сидит очень крепко. Частично на двухстороннем скотче, частично приклеена силиконом в районе силовых элементов. На фото видно внутренности корпуса, в дополнение там осталась какая-то клейкая масса.

На вид экономно, но вполне качественно. Радиаторы имеют изоляцию и удерживаются за счет самого силового элемента, дополнительного лепестка и силиконовым герметиком. Также к корпусу приклеен трансформатор и входной дроссель. В общем вынималась плата довольно тяжело.

На входе присутствует предохранитель, а также входной фильтр. К сожалению нет термистора, вместо него перемычка.

1. Входной конденсатор имеет емкость 68мкФ, для мощности около 40 Ватт вполне достаточно. 2. Высоковольтный транзистор CS7N60F в полностью изолированном корпусе. 3, 4. С одной стороны трансформатора спрятался оптрон обратной связи, с другой — правильный помехоподавляющий конденсатор Y класса, так что током вас не убьет. 5. Выходная диодная сборка 10 Ампер 100 Вольт, с запасом как по току, так и по напряжению. 6. Выходные конденсаторы имеют емкость 1000мкФ и напряжение до 25 Вольт, здесь также вопросов нет. Попутно есть место для установки помехоподавляющего дросселя и третьего конденсатора.

Снизу платы компонентов еще больше.

«Горячая» сторона блока питания. Здесь у меня также не возникло вопросов, ну почти не возникло :)

«Холодная» сторона. Здесь расположены элементы стабилизации напряжения, тока, а также индикации окончания заряда.

Претензия к «горячей» стороне у меня была только в плане пайки, а точнее ее качества. Такое ощущение, что ШИМ контроллер перепаивали, так как остальные компоненты запаяны аккуратно. К выходной стороне вопросов нет, все аккуратно, элементы дополнительно зафиксированы при помощи клея. Операционный усилитель LM358.

Так как обзора подобного устройства у меня еще нет, то не перерисовать схему было нельзя. Впрочем первичная часть блока питания оказалась практически один в один с блоком питания, который я уже обозревал — Блок питания 12 Вольт 1 Ампер. Блок весьма надежный и качественный. Отличие только в номиналах некоторых компонентов, а также их количестве, микросхема имеет одинаковую распиновку.

Так как схема большая, то чтобы было более понятно, я разбил ее на две части, первичную и вторичную. Вторичная сторона отличается от привычных схем блоков питания, так как содержит больше узлов.

Распишу отдельно узлы. 1. Зеленый — Узел стабилизации выходного напряжения, отвечающий за режим CV. 2. Красный — Стабилизация тока, режим СС. 3. Синий — узел индикации. Слева вверху два выпрямителя, основной и дополнительный (D3, С5) для питания операционного усилителя и светодиода. Дополнительное питания необходимо чтобы эти элементы не потребляли ток когда подключен аккумулятор, а зарядное не включено в розетку. Между красным и синим узлом источник опорного напряжения для узла индикации и стабилизации тока.

И хотя большей частью все сделано вполне корректно, но есть особенность. Параллельно первому конденсатору подключен резистор номиналом 2.2к (R13A), потому потребление в выключенном состоянии есть все равно. Попробовать исправить эту ситуацию можно установкой диода (отмечен красным) вместо перемычки, которая в свою очереди стоит на месте отсутствующего помехоподавляющего дросселя. Но есть проблема, этот диод будет греться, причем заметно, потому я бы рекомендовал оставить как есть. Теперь что менять если надо другое напряжение/ток. 1. Зеленый — делитель по цепи измерения напряжения, увеличение номинала верхнего резистора увеличит выходное напряжение, нижнего — уменьшит. 2. Синий — Увеличение номинала шунта уменьшит ток, уменьшение — увеличит. Изменение будет пропорционально изменению номинала. Также изменение этого резистора влияет и на индикацию. R19, R13, увеличение верхнего резистора — уменьшение выходного тока, изменение нижнего действует наоборот. 3. Оранжевый — Делитель порога переключения индикации. Все то же самое как в п.2, только для индикации. Кстати отмечу, что этот узел имеет гистерезис, потому переключение красный/зеленый происходит скачкообразно, а не плавно, мелочь, но приятно.

Отдельно фотка для перфекционистов, здесь я перечислил то, что можно установить на плату. 1. Y- конденсаторы, так как подключение без заземления, то смысла не имеют. Если заменить гнездо на трехконтактное, уменьшат помехи в сеть. 2. Термистор, уменьшит пусковой ток. Например NTC 5D-9 3. Выходной дроссель. Уменьшит уровень пульсаций на выходе, ток более 3 Ампер, индуктивность 1-10мкГн. 4. Варистор, увеличит защищенность блока питания при подаче высокого напряжения на вход. Диаметр 10мм, напряжение 470 Вольт. 5. Х-конденсатор, уменьшит уровень помех в сеть, место под 22-33нФ. 6. Двухобмоточный дроссель, обычно на небольшом колечке, также для уменьшения помех в сеть. 7. Диодная сборка. Можно поставить параллельно первой, немного увеличит КПД и поднимет надежность, лучше ставить такую же как уже используется, 10 Ампер 100 Вольт. 8. Выходной конденсатор. На уровне пульсаций скажется мало, но может поднять надежность работы. 1000мкФ 25 Вольт.

Переходим к тестам. Для начала пройду по основным позициям 1. Выходное напряжение — завышено примерно на 30мВ, считаю что вполне в норме. 2. Ток от аккумулятора при отключенном питании, около 7мА. Довольно много, разрядит аккумулятор примерно через 2-3 недели. Лучше использовать аккумуляторы с защитой, впрочем защита обязательна в любом случае. 3. Зарядный ток 2.9 Ампера, немного ниже заявленного, но я считаю что ничего страшного. 4. Индикация настроена на ток 270мА, при падении тока заряда ниже этой величины включается зеленый светодиод и погасает красный. 5, 6. Так как устройство не умеет полностью обесточивать аккумулятор, то дальше вы увидите падение тока почти до нуля. К примеру с 66мА до 28мА ток упал примерно за 8 минут. Режим без полного снятия тока допустим, хотя и не очень желателен. Если аккумулятор исправен, то проблем не будет, но я бы советовал просто не оставлять его на большое время, например день-два.

Дальше я подключил зарядное к электронной нагрузке. Но так как электронная нагрузка не имеет режима CV, то пришлось подключиться минуя цепь стабилизации тока. Был задан ток нагрузки в 3 Ампера и закрыт корпус для термопрогрева. Попутно контролировался уход напряжения, здесь также проблем нет, 5мВ через час термопрогрева это просто отлично, сказывается то, что большей частью применены точные резисторы.

Так как это зарядное, а не блок питания и большую часть времени оно работает с максимальным током, то я сразу зада ток 3 Ампера. Время теста было 1 час, за это время оно полностью зарядит аккумулятор емкостью 2400-2600мАч. Дальше в любом случае ток начнет падать и тестировать нагрев смысла нет.

1. Спустя час я проверил температуру корпуса, в самом горячем месте прибор показал 59 градусов, хотя на ощупь корпус был не горячий, возможно сказывается то, что пластмасса частично прозрачна в ИК диапазоне. 2. Открыл корпус и измерил температуру, самая высокая была в районе снаббера и шунта первичной стороны, около 80 градусов, транзистор имел температуру 70-72 градуса. 3. Закрыл корпус на пару минут, повернул на 180 градусов, чтобы были видны остальные компоненты и измерил еще раз. В этот раз самую высокую температуру имела выходная диодная сборка, около 85 градусов.

Из тестов могу заключить, что с температурным режимом все нормально, до критических температур есть запас еще около 20-30 градусов.

После обзора было снято видео, где я вкратце объясняю что к чему, просто как дополнение.

Что можно сказать в качестве резюме, сначала по пунктам:Преимущества Крепкая и аккуратная конструкция Применены компоненты с запасом Хорошая стабильность параметров Отсутствие перегрева Четкая работа индикации окончания заряда

Недостатки Отсутствие полного отключения заряда Собственное потребление в 7мА. Вилка кабеля имеет плоские штыри.

Мое мнение. На мой взгляд устройство имеет только один существенный недостаток, оно не снимает зарядный ток полностью. правильный заряд идет до снижения тока ниже 1/10 от установленного, затем отключение и последующее включение если напряжение опять снизится. Конечно можно подумать и сделать какую нибудь схемку с гистерезисом, которая будет не отключать заряд, а снижать выходное напряжение так, чтобы прекращался зарядный ток. Но на мой взгляд, если не оставлять подключенный аккумулятор надолго, то вполне пройдет и вариант как сделано сейчас. Порадовала довольно неплохая сборка и то, что компоненты установлены с запасом. Также стоит отметить отсутствие перегрева, чем грешит довольно большое количество блоков питания. Мне вообще показалось, что устройство собрали на базе БП 12 Вольт 5 Ампер, подняв немного напряжение и снизив ток, потому получился такой результат.

В общем если вы переделали батареи своего шуруповерта и они имеют напряжение 12.6 Вольта (три последовательных аккумулятора), а родное зарядное не подлежит восстановлению, то довольно неплохой вариант.

На момент заказа зарядное стоило около 13.7 доллара, для обзора менеджер снизил цену до 11 долларов, что на мой взгляд вполне адекватно за данное устройство с учетом его функционала и качества сборки.

На этом все, надеюсь что обзор был полезен.

Небольшой бонус

А не протестировать ли нам аккумулятор смартфона.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru


Смотрите также