Содержание

Как подобрать конденсатор для однофазного электродвигателя или трехфазного

Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т. к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т. е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Итак, как подобрать конденсатор для однофазного электродвигателя?

Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.

Есть несколько режимов работы двигателей подобного типа:

  • Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
  • Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
  • Рабочий конденсатор + пусковой конденсатор (подключены параллельно).

Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.

Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.


Как подключить электродвигатель однофазный к сети 220 Вольт. Пуск и работа асинхронного двигателя на 220В на примере двигателя типа АВЕ 071-40У4 от стиральной машины Сибирь. Схема подключения.



Подключение однофазного асинхронного двигателя к сети 220в. Пуск однофазного двигателя от стиральной машины Сибирь от сети 220в. Двигатель от стиральной машинки Сибирь сделать под наждак (точило), торчат четыре провода. Как подключить

Электродвигатель типа АВЕ 071-40У4 от стиральной машины «Сибирь» имеет две обмотки — пусковую и рабочую, из снятого двигателя торчат четыре провода. Эти 4 провода необходимо «прозвонить» любым пробником или прибором, чтобы определить выводы каждой из обмоток. Далее на корпусе двигателя Вы можете прочитать, конденсатор какой емкости Вам потребуется для пуска однофазного асинхронного двигателя на 220 Вольт от стиральной машинки «Сибирь» — это конденсатор емкостью 6 микрофарад на напряжение 600 Вольт. Далее соединяете все по электрической схеме, представленной ниже. Если двигатель и конденсатор исправны, то все должно работать.

Ниже на фото представлено практическое воплощение способа подключения однофазного асинхронного двигателя на 220 Вольт

и, в отличие от сказанного выше, здесь применен конденсатор не на 6 мкф 600В, а два параллельно соединенных конденсатора, емкость каждого из которых 4 мкф, что в сумме составит 8 мкф — ничего страшного, такая схема пуска тоже отлично работает. Если Вы захотите изменить направление вращения вала двигателя, т.е. осуществить реверс, то Вам необходимо просто поменять местами выводы обмотки В (см. схему электрическую принципиальную). Данную схему подключения можно использовать для изготовления из этого, или другого аналогичного асинхронного однофазного двигателя, точила (наждака). Удачи Вам!

********************************************************************************************************************************************

!!! СЕРЬЁЗНЫЕ ЗНАКОМСТВА С ИНОСТРАНЦАМИ ДЛЯ ЖЕНЩИН ИЗ РФ И СНГ !!!

**********************************************************

!!! СЕКС-ЗНАКОМСТВА, СЕКС-ФОТО И СЕКС-ВИДЕО. ЗАХОДИ !!!

********************************************************************************************************************************************

В категорию сайта «Техника и электротехника»

ВИНЕГРЕТ.РУ — Обо всем понемногу. ГЛАВНАЯ

Как подключить бесколлекторный двигатель от стиральной машины


В наше время почти в каждой семье имеется стиральная машина. Но в этом мире нет ничего вечного. Стиральные машины тоже приходят в негодность и требуют замены. Но в некоторых семьях есть мужчины-самодельщики. Такую интересную вещь, как стиральная машина, они не отнесут на свалку в день поломки, а разберут её на части и оставят в своём мужском хозяйстве самые интересные детали. А интересного в машине много. Самое главное – это электродвигатель. Вот о нём и стоит поговорить подробней. Как же подключить двигатель стиральной машины к сети – об этом поговорим в этой статье.

Внешний вид стиральной машины ФОТО: 1stiralnaya.ru

Электрическая схема стиральной машины

Хорошо разбираться в электрической схеме стиральной машины каждый рядовой пользователь совсем не обязан. Это необходимо тем, кто занимается ремонтом этого представителя сложной бытовой техники. Но общее представление об её устройстве не помешает никому.


Основные узлы стиральной машины ФОТО: 1stiralnaya.ru

Любая стиральная машина состоит из механической и электрической части. К механике относится корпус, дверца, барабан, все подшипники и шестерёнки. Для амортизации машины от тряски при отжиме установлены пружины. Подача воды в машину и слив из неё происходят по шлангам, которые закреплены в патрубках с уплотнениями. В системе слива на выходе установлен сливной насос. Для загрузки стиральных средств в машину встраивается трёхсекционный лоток.

К электрической части относятся электродвигатель, электрическая схема его включения, двигатель сливного насоса, комплекс устройств, формирующих алгоритм и безопасность процесса стирки.

Электрическая схема стиральной машины, в первую очередь, предназначена для включения мотора.

Электромотор и барабан – это детали, легко переходящие в другую жизнь. Особенно, мотор. Существуют модели, оснащённые двумя электродвигателями: один – основной для стирки, со скоростью вращения около 2000 оборотов в минуту, а второй – скоростной для центрифуги отжима, со скоростью вращения около 3000 оборотов в минуту.

Система управления реализует выбранную хозяйкой программу стирки. В старых машинах они базируются на реле времени, в современных машинах это электронные системы. На каждую операцию программы выделяют определённое время, формируют команду на включение двигателя в ту или другую сторону. В некоторых моделях имеется третий электромотор, который приводит в действие кулачковое программное устройство.

Схема управления контролирует температуру обмоток двигателя с целю защиты его от перегрузки. Датчики уровня и давления дают информацию для управления подачей воды. Нагрев жидкости для стирки тоже происходит в самой машине. Регулятор температуры (термостат), работающий в комплекте с датчиком температуры, включает и выключает электрические нагреватели. Если двигатель в машине с переменной скоростью, то в системе управления предусмотрен датчик скорости (тахогенератор).

Хозяин задаёт машине свои желания с панели управления, расположенной в верхней лицевой части корпуса машины.

Для безопасности пользователя во всех машинах предусмотрена система блокировок. Она не позволяет включить мотор при открытой загрузочной дверце и открыть дверцу при наличии в машине воды. Обратный клапан на подающей воду трубе защищает от затопления.

Стиральная машина подключается к электросети трёхполюсной вилкой с заземлением.

Что необходимо учесть при подключении двигателей от стиральной машины разного типа

Стиральная машина подключается к электрической сети в соответствии с «ПУЭ 7. Правила устройства электроустановок».


Схема подключения стиральной машины к электрической сети ФОТО: 1stiralnaya.ru

Даже поверхностное знакомство с устройством машины и её электрической схемой обеспечивают более сознательную её эксплуатацию и возможность минимизировать количество аварийных ситуаций. Принципиальная электрическая схема является графическим изображением основных электрических компонентов машины и связей между ними.

Электродвигатели в стиральных машинах используется трёх типов.

Асинхронный

В большинстве стиральных машин выпусков прежних лет применяются трёхфазные асинхронные двигатели, каждый из которых состоит из неподвижного статора и вращающегося ротора. Переменный ток инициирует в секциях обмотки статора вращающееся магнитное поле, которое индуцирует ток в роторе. Этот вторичный наведённый ток взаимодействует с магнитным полем статора, и на ротор начинает действовать вращающая его сила, благодаря которой он начинает вращаться и передавать своё вращение связанным с ним устройствам.

Двигатели этого типа просты по конструкции, неприхотливы в обслуживании, надёжны в эксплуатации. Основными недостатками являются большие пусковые токи и сложности в регулировании скорости вращения.


Реверсивная схема подключения асинхронного двигателя с пусковой обмоткой ФОТО: elektt.blogspot.com

Коллекторный

У коллекторных двигателей обмотки расположены и на статоре, и на роторе. Ток к ротору подводится через устройство, под названием «коллектор», которое состоит из ламелей, закреплённых на валу ротора, и двух неподвижных относительно статора «щёток».


Схема подключения коллекторного двигателя ФОТО: elektt.blogspot.com Коллекторный двигатель работает и от переменного, и от постоянного тока. Здесь легко регулировать обороты изменением величины питающего напряжения. В качестве промышленного устройства можно использовать подходящий по мощности диммер от системы освещения.

Инверторный

Инверторный двигатель в стиральной машине является наиболее современным решением. Принцип работы в том, что во встроенном инверторе переменный ток электрической сети преобразуется в постоянный, а потом снова в переменный ток нужной частоты, которая и определяет скорость вращения вала. Он, в отличие от коллекторного, не имеет щёток и издаёт меньше шума. Нет щёток – нет изнашивающихся деталей, поэтому регулярно заменять ничего не надо. Но за инвертор нужно платить, такая машина стоит дороже.

Отличия электродвигателей

Различия электродвигателей по типам даны в их описаниях. Асинхронный двигатель самый простой по конструкции. У коллекторного имеется возможность легко регулировать скорость вращения. А инверторный двигатель напрямую без ремней и шестерёнок соединяется с валом барабана. Если коротко, то более современные моторы меньше шумят, подвергаются регулированию оборотов, но стоят дороже.

Конденсатор для электромотора

Для небольших двигателей (<1 кВт), значение пускового конденсатора может быть определено из соотношения:

С [мкФ] = (1800 х Pn) / U2

где Pn [Вт] — номинальная мощность двигателя, U [В] — напряжение питания.

Эта формула также подходит для расчета значения пускового конденсатора для однофазных двигателей с начальной фазой.

Для более крупных двигателей (> 1 кВт) предполагается ёмкость около 70 мкФ / 1 кВт. Необходимо использовать пусковые конденсаторы с рабочими напряжениями 400..630 В переменного тока.

Вы можете опустить расчёты и просто подключить стандартный двигатель от стиралки к 1 фазе 220 В через 7 микрофарадный конденсатор, включенный между нужными клеммами. К середине подключите первый провод электросети, а второй в зависимости от направления вращения к одному из конденсаторных. Падение мощности составит 30% — это в теории.

Вопрос о выборе конденсатора решается легко. Вот примеры значений емкости для разных мощностей двигателя.

Pn [Вт] 90 120 180 250 370 550 750 1100 С [мкФ] 4 5 6 8 12 16 20 30

Полезное: Схема подключения стартера ВАЗ

Мощность вращения в стиральной машине в обоих направлениях одинакова. Это моторы с типичным соединением для однофазного двигателя. Основная обмотка подключена непосредственно к 220 В и параллельно ей подключена фазовая обмотка вместе с последовательно соединенным конденсатором. Если вы перевернете провода фазовой обмотки, двигатель перейдет на вращение в другую сторону, но мощность будет немного меньше. Эта схема работает во время отжима. То же самое для медленных и быстрых вращений — ёмкость переключается внутри стиралки с 7 мкФ на 16 мкФ. Более подробно про конденсатор читайте тут

Подключение двигателя современной стиральной машины автомат к сети 220 В

Схема подключения двигателя стиральной машины

У новых стиральных машин «автомат» главный двигатель коллекторного типа. Это значит, что у него имеется двухкатушечная обмотка на статоре и обмотка возбуждения на роторе. Ротор и статор включены последовательно. Ток в обмотку возбуждения поступает через щётки. Электрическая схема подключения двигателя к сети та же самая, что и на №5.

Регулятор оборотов

Регулятор оборотов можно применить любой стандартный мощностью 2,5–3,0 кВт. Также можно использовать осветительный диммер, но в нём предварительно необходимо заменить симистор на BT138X-600 или BTA20-600BW или другую модель с десятикратным превышением тока потребления двигателя.

Чтобы избежать падения оборотов под нагрузкой, применяются специальные устройства на интегральной микросхеме TDA1085, управляющие током и напряжением на двигателе.


Регулятор оборотов двигателя ФОТО: electrik.info

Если обороты двигателя надо понижать существенно, то с нагрузкой его следует соединять через ремённую передачу или редуктор.

Как подключить двигатель от стиральной машины

При подключении двигателя, извлечённого из стиральной машины, необходимо удалить лишние провода. При работе следует руководствоваться рисунками 7 и 8, внимательно контролируя цвет проводов.


Провода на выходной клеммной колодке двигателя, необходимые для подключения ФОТО: sdelaysam-svoimirukami.ru


Подключение двигателя к сети с учётом цвета проводов ФОТО: sdelaysam-svoimirukami.ru

Вторая жизнь мотора

После покупки новой стиральной машины, старую выбрасывать необязательно. Исправные элементы можно использовать в быту. Например, двигатель находит интересное применение.

Точильный станок

Предназначен для заточки ножей и инструмента. В принципе, сделать может любой человек. Главная трудность заключается в креплении абразивного диска. Вал двигателя стиральной машины не предназначен для установки дополнительных деталей. Он имеет только бороздки для приводного ремня.

Точильный станок из стиралки

В этом случае вероятны два варианта действий:

  1. К концу вала приварить удлинение, на которое уже прикрепить точильный диск. Здесь нужна большая точность, что соосность сохранилась.
  2. Обработать вал на станке, чтобы появилась возможность установить диск и укрепить его, например, шайбой.

Если это удастся смастерить, то остальное дело техники. Нужно будет найти подходящее место и закрепить устройство.

Вибростол

Вибростол может понадобится тем, кто занимается самостоятельным производством тротуарной плитки или шлакоблоков. Здесь также стоит вопрос в обработке вала, для крепления деталей.

Применяете лимонную кислоту?

О-да!Нет

Кроме этого, двигатели от стиральных машин используют для изготовления следующих изделий:

  • Бетономешалка. Довольно часто так применяют, потому что удобно для этих целей использовать бак стиралки. Разумеется, нужно произвести определённую доработку. Мощность будет небольшая, но вполне достаточная для личных целей.
  • Мельница для измельчения травы. Редкое применение, но очень удобное для жителей сельской местности, которые содержит птицу.

Возможны и другие, более экзотические варианты. Тут многое зависит от личных потребностей и фантазии.

Видео по изготовке регулятора двигателя оборотов своими руками

Подключение двигателя старой стиральной машины

У старых стиральных машин двигатели асинхронного типа с двумя обмотками – пусковой и рабочей. У пусковой обмотки выше омическое сопротивление. Если найдены выходные провода от обеих обмоток, и обе обмотки целые, то двигатель можно подключать

Схема подключения мотора от стиральной машины

Имеется два варианта подключения двигателя – с конденсатором, рассчитанным на напряжение 450-600 В, ёмкостью от 4 до 8 мкФ и с кнопкой кратковременного включения.


Схема подключения двигателя старой машины ФОТО: zen.yandex.ru


Схема подключения двигателя старой машины с кратковременным контактом ФОТО: zen.yandex.ru

Как подключить двигатель

Для подключения двигателя, первым делом необходимо определить пары проводов от обеих обмоток. После этого принять решение о схеме подключения – с конденсатором или с кнопкой. Собрать схему и выполнить пробное включение. Если двигатель крутится не в ту сторону, которая нужна владельцу, то следует поменять местами точки подключения пусковой обмотки.

Схема подключения мотора к сети

Современная стиральная машина

При подключении двигателя современного устройства для стирки к сети с напряжением 220В необходимо учесть его основные особенности:

  • он работает без пусковой обмотки;
  • для запуска мотору не нужен пусковой конденсатор.

Чтобы запустить двигатель, следует определенным образом подсоединить к сети идущие от него провод. Ниже представлены схемы подключения коллекторного и бесколлекторного электромоторов.

Прежде всего, определите «фронт работ», исключив контакты, которые идут от тахогенератора и не участвуют в подключении. Распознаются они посредством тестера, работающего в режиме омметра. Зафиксировав инструмент на одном из контактов, другим щупом отыщите парный ему вывод. Величина сопротивления проводов тахогенератора составляет порядка 70 Ом. Чтобы найти пары оставшимся контактам, прозвоните их аналогичным образом.

Теперь переходим к наиболее ответственному этапу работы. Подключите провод 220В к одному из выходов обмотки. Второй ее выход требуется соединить с первой щеткой. Вторая щетка подключается к оставшемуся 220-вольтовому проводу. Включите мотор в сеть, чтобы проверить его работу*. Если вы не допустили ошибок, ротор начнет вращаться. Имейте в виду, что при подобном подключении он будет двигаться только в одну сторону. Если пробный пуск прошел без накладок, устройство готово к работе.

Чтобы изменить направление движения двигателя на противоположное, подключение щеток следует поменять местами: теперь первая будет включена в сеть, а вторая соединена с выходом обмотки. Проверьте готовность мотора к работе описанным выше способом.

Наглядно процесс подключения вы можете увидеть в следующем видео.

Стиральная машина старой модели

С подключением двигателя в машинах старого образца дело обстоит сложнее.

Сначала определите две соответствующие друг другу пары выводов. Для этого используйте тестер (он же — мультиметр). Зафиксировав инструмент на одном из выводов обмотки, другим щупом отыщите вывод, парный ему. Оставшиеся контакты автоматически образуют вторую пару.

Что делать, если мотор не запускается

Если мотор, извлечённый из машины, не запускается, то причины могут быть как механического, так и электрического характера.

Если включённый мотор не крутится, но греется, его надо быстро выключить и попытаться провернуть рукой. Если раздаётся скрежет, то следует проверить подшипники, они могли разлететься. Тогда их вместе с сальниками следует заменить.

Ещё нужно проверить, не попал ли какой-нибудь мусор в промежуток между ротором и статором.

Если механических причин не обнаружено, то следует прозвонить электрические цепи – нет ли где обрыва. В коллекторных двигателях следует проверить износ щёток и плотность их прижима к поверхности коллектора. Щётки при длительной эксплуатации изнашиваются, их надо вовремя менять.

Схемы подключения

Схема подключения одно- и трехфазных вентиляторов
Схема подключения Описание
3226 381200, 416279 Две скорости, одна обмотка, ТН или ТТ M / S, одно напряжение
3233 Две скорости, одна обмотка, CHP M / S, одно напряжение
3251 344139, 416282 Две скорости, две обмотки, VT / CT / CHP M / S, одно напряжение
11658 344137, 416280 Соединение звезда-треугольник, одиночное напряжение
108323 Однофазный, двойное напряжение, 6 выводов, вращение против часовой стрелки
108324 Однофазный, однофазный, 4 вывода, вращение против часовой стрелки
109144 158802, 344136 Соединение звездой, двойное напряжение
109145 158803, 344122 Соединение треугольником, двойное напряжение
130274 381679 Соединение звездой, двойное напряжение, PWS на низком напряжении
137033 344138 Соединение звезда-треугольник, двойное напряжение
159833 344133 Соединение треугольником, двойное напряжение, PWS на низком напряжении
165975 377836, 416281, 896428 Соединение звездой или треугольником, одно напряжение, PWS
195759 96441 6 выводов, соединение звездой или треугольником, одно напряжение с полной обмоткой — начало через линию
356693 Однофазный, однофазный, 4 вывода, вращение против часовой стрелки
387151 7 выводов, две скорости, две обмотки, ТН / ТТ / ТЭЦ, одно напряжение
388299 Соединение звездой с нейтралью, одно напряжение
390880 Соединение звездой, двойное напряжение, с термозащитой
414729 6 выводов, соединение звездой, одно напряжение, полная обмотка — начало через линию
434839 Одно напряжение звезда или треугольник с одним трансформатором тока
438252 438264 6 выводов, 1.Соотношение 73: 1, двойное напряжение или запуск по схеме звезда — треугольник при низком напряжении
453698 Однофазный, однофазный, 4 вывода, индукционный генератор
463452 2 скорости, 2 обмотки, одно напряжение, соединение звездой, с трансформаторами тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений; Низкоскоростная обмотка
466703 12 выводов, пуск звезда — треугольник или одно напряжение PWS, собранный в распределительной коробке
488075 Пуск, треугольник, звезда или подключение PWS, 12 выводов, двойное напряжение
488076 Пуск, треугольник, звезда или соединение PWS, 2 полюса, 12 выводов, одно напряжение
499495 (дельта) 912113 Соединение треугольником, одно напряжение
499495 (звезда) 912113 Соединение звездой, одно напряжение
587-13816 423622, 978576 Соединение треугольником, трансформаторы тока
587-18753 423555, 958798 Соединение звездой, трансформаторы тока
779106 Две скорости, две обмотки, CT / VT / CHP M / S, YD на обеих скоростях, одно напряжение
845929 Соединение звездой, трансформаторы тока, LA, SC, одиночное напряжение
872326 Две скорости, одна обмотка, яркость на высокой скорости, одно напряжение
897847 Подключение силового блока
1 Однофазный, одно напряжение, 3 вывода, вращение по часовой или против часовой стрелки
3 Однофазный, 115/230 В, 7 выводов, с тепловой защитой, вращение по часовой стрелке
  • 6
  • Соединение звездой, двойное напряжение, с термозащитой

    0

    12 выводов, двойное напряжение, Y-D ИЛИ 6 выводов, одиночное напряжение, Y-D
    912540 Однофазный, двойное напряжение, 11 выводов, с тепловой защитой, вращение по часовой стрелке
    912541 356692 Однофазный, одно напряжение, 5 выводов, с тепловой защитой, вращение по часовой стрелке
    912577 108323 Однофазный, двойное напряжение, 6 выводов, вращение по часовой стрелке
    915402 Две скорости, две обмотки, одно напряжение, PWS на обеих обмотках или полная обмотка — начало через линию
    916220 Соединение треугольником, одно напряжение, с 4 трансформаторами тока, LA и SC
    924243 Соединение звездой, двойное напряжение, PWS на оба напряжения
    957238 Пуск, треугольник, звезда или подключение PWS, 12 выводов, одно напряжение
    965105 Соединение треугольником, 9 выводов, ТН, 2 скорости, 1 обмотка, одно напряжение
    987241 Соединение треугольником, одно напряжение, с трансформаторами тока, LA и SC
    991905 Подключение двигателя с тройным расходом
    2010950 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока
    2010964 Одно напряжение, соединение WYE, с частичной защитой трансформатора тока, грозозащитными разрядниками и конденсаторами импульсных перенапряжений
    Воздуходувка,
    * Термозащита

    Калькулятор расчета конденсатора однофазного двигателя

    Однофазный двигатель Вычислитель конденсатора:

    Введите входное напряжение, мощность двигателя в ваттах, КПД в процентах, частоту, затем нажмите кнопку расчета, вы получите требуемое значение емкости.

    Формула для расчета конденсатора однофазного двигателя:

    Изначально однофазный двигатель требует небольшого толчка ротора для вращения ротора с номинальной частотой вращения. Выбор правильного конденсатора для однофазного двигателя действительно сложен, он может привести к запуску двигателя или нет.

    Однофазная емкость C (мкФ) в микрофарадах равна 1000 произведению мощности P (Вт) в ваттах и ​​эффективности η, деленных на произведение напряжения V (В) в квадрате вольт и частота F (Гц) .Формула для расчета емкости конденсатора

    C (мкФ) = (P (W) x η x 1000) / (V (V) x V (V) x f)

    Посмотрите на формулу, требуемое значение емкости прямо пропорционально мощности двигателя. Следовательно, при увеличении размера двигателя размер емкости также будет увеличиваться.

    Расчет номинального напряжения конденсатора:

    Номинальное напряжение конденсатора равно произведению напряжения, измеренного на обоих концах основной обмотки, в вольтах, на корень из единицы и отношение витков n квадрат.

    В (К) = Vp √ (1 + n 2 )

    n равно отношению витков основной / вспомогательной обмотки. Вышеприведенная формула используется для определения приблизительного напряжения на конденсаторе.

    Пример 1:

    Рассчитайте требуемое значение номинальной емкости для однофазного, 220 В, 1 л.с., 50 Гц, 80% двигателя.

    1 л.с. = 746 Вт.

    Воспользуйтесь нашей формулой расчета емкости.

    C (мкФ) = 746 x 80 x 1000 / (220 x 220 x 50) = 24.66 мкФ.

    Следовательно, двигателю мощностью 1 л.с. требуется емкость 24,66 мкФ для плавного пуска двигателя. Но на рынке можно получить 25 мкФ.

    Диапазон напряжения конденсатора должен составлять 440 В мин.

    Пример 2:

    Таким же образом возьмем другой пример:

    Рассчитайте пусковую емкость для однофазного вентилятора 70 Вт, 220 В, 50 Гц, КПД 85%.

    C (мкФ) = 70 x 80 x 1000 / (230 x 230 x 50) = 2,459 мкФ.ок. 2,5 мкФ.

    Следовательно, вы можете проверить наш расчет с вашим вентилятором.

    Диапазон напряжения конденсатора должен составлять 440 В мин.

    Реверсивные однофазные асинхронные двигатели

    Реверсивные однофазные асинхронные двигатели

    Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают о том, как изменить асинхронный двигатель переменного тока. Раньше я подробно не рассказывал, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

    Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора. Алюминий также проходит через продольные отверстия в роторе для укорочения типа «беличья клетка» обмотка цепи. Линии едва видны под небольшим углом на роторе где проходят обмотки.

    Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если на него воздействует вращающееся магнитное поле, он попытается следовать за ним.(подробнее об этом здесь)

    В трехфазном двигателе, естественно, три фазы на трех обмотках. создают вращающееся магнитное поле. Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужны некоторые хитрости для создания вращающегося поля.

    Реверс двигателя с расщепленной фазой

    В этом двигателе с расщепленной фазой основная обмотка (метка ‘M’) подключается непосредственно к источнику переменного тока 60 Гц, а другая обмотка (метка ‘O’) подключена последовательно с конденсатор (С). Взаимодействие индуктивности двигателя обмотки и емкость конденсатора приводят к тому, что обмотка составляет около 90 градусы не совпадают по фазе с основной обмоткой.

    Основная обмотка создает магнитное поле, чередующееся по вертикали, а другая обмотка создает магнитное поле, чередующееся по горизонтали. но не в фазе, в сумме это вращающееся магнитное поле. Ротор пытается следовать за ним, заставляя его вращаться.

    Реверс двигателя — это просто перестановка силового соединения. так что другая обмотка находится непосредственно на переменном токе. По сути, перемещение одна сторона силового соединения от (A) до (B), в результате чего обмотка (O) быть основной обмоткой, а обмотка (M) — фазосдвинутой.

    На двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные количество оборотов, поэтому этот метод реверсирования может быть неприменим. Сначала убедитесь, что сопротивление двух обмоток одинаково.

    Если обмотки не одинакового сопротивления, вы все равно можете его поменять местами. поменяв полярность одной из обмоток, при условии, что винты не связаны друг с другом внутри двигателя (например, более трех провода выходящие из обмоток).

    Обмотки стартера на более мощных двигателях

    Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных сил, обмотки выглядят намного сложнее.Обмотки распределены по множеству пазов в статоре двигателя (C). Таким образом, там меньше резкого перехода от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его тише, более эффективный мотор.

    Этот двигатель имеет толстую главную обмотку (M), а также обмотку стартера. из более тонкой проволоки (S). Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

    Эта обмотка стартера включена последовательно с конденсатором (C) и центробежным переключатель (S).В этом моторе установлен пусковой конденсатор. внутри основного корпуса. Обычно пусковой конденсатор монтируется сверху корпуса под металлическим куполом.

    Центробежный выключатель (S) установлен на задней панели. и активируется диском (P), который нажимает на выступ на переключатель (слева от буквы S на фото).

    Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что по очереди вытягивает диск обратно.Это освободит пластиковый язычок на переключателе, вызывая размыкание переключателя и отключение обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не контактировать с язычком, сводящим к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключается на вращение.

    Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, различить гораздо труднее.

    Если обмотка стартера помогает запускать двигатель, это обязательно поможет. мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну а Вся штука с фазовым сдвигом не так уж и элегантна. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска мотора, вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор является электролитическим конденсатором и не является рассчитан на постоянную нагрузку. И потому что обмотка стартера только используется недолго, поэтому для экономии денег он сделан из более тонкой проволоки, потому что медь стоит дорого.

    Некоторые двигатели используют большой конденсатор для запуска и конденсатор меньшего размера для непрерывной работы. Такие моторы часто имеют два внешних конденсатора (C), как видно на этом в моей настольной пиле. Эти двигатели называются двигателями с конденсаторным запуском и запуском конденсатора. Конденсаторные двигатели с конденсаторным запуском обычно имеют более одного Лошадиные силы. Это 1,75 лошадиных сил.

    Двигатели можно удешевить, заменив их конденсатор на резистор. Хотя обычно отдельный резистор не добавляется.Вместо, обмотка стартера сделана из более тонкой (дешевой) медной проволоки, поэтому у него большее сопротивление в самой обмотке.

    Это приводит к гораздо меньшему фазовый сдвиг, чем у конденсатора, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, а когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на катушку индуктивности, ток отстает от напряжения на 90 градусов. И магнитное поле строго функция тока.

    Для резистора ток синфазен с напряжением.Если бы у нас был большой последовательное сопротивление и малая индуктивность, падение напряжения и ток будет во многом определяться резистором. Итак, ток и магнитный поле будет в значительной степени синфазным с приложенным напряжением. С участием тока в основной обмотке, отставая на 90 градусов, мы имели бы Разница между ними 90 градусов, но обмотка стартера было бы крайне неэффективно.

    На самом деле компромисс гораздо меньше. фазового сдвига и большей мощности. Этого достаточно, чтобы мотор заработал.Как бы то ни было, стартер на этих моторах довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако лишний ток требуемый для стартера может сработать автоматический выключатель, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 или больше обычно используется пусковой конденсатор.

    Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, неадекватен, и вы можете узнать больше об индукции моторы, если вы этого не понимаете.

    В асинхронных двигателях изнашиваются только подшипники, выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей потерпеть неудачу.

    Совсем недавно я случайно зажал выключатель стартера на Мотор с резистивным запуском мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и мотор отключился всего за 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.

    Реверс конденсаторного пускового двигателя

    Так как же нам поменять местами конденсаторный двигатель? Как только началось, однофазная индукция мотор с радостью будет вращаться в любом направлении.Чтобы обратить это вспять, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и стартерные обмотки. И этого можно добиться, переставив полярность стартерной обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, Иногда обмотка, переключатель и конденсатор в обратном порядке. Порядок выключателя и конденсатора не важно, если вы подключены последовательно.

    Вы также можете перевернуть двигатель, перевернув основную обмотку. (тот же эффект).

    Если бы вам пришлось поменять местами основную и стартерную обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет реверсировать. Тем не мение, он не будет работать на полную мощность и также может сгореть. В обмотка стартера не предназначена для продолжительной работы.

    Наклейка на этом двигателе указывает: «ДВИГАТЕЛЬ НЕРЕВЕРСИРУЕТСЯ».

    Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что только три провода (красный, желтый и синий) выходят из обмоток.Один конец основной и пусковой обмоток соединен между собой. прямо на обмотках.

    Чтобы перевернуть обмотку стартера, мне пришлось бы разорвать это соединение внутрь обмоток и вытащить другой конец стартера обмотка. Но я действительно не могу понять это из-за как это внутри мотора. Мне пришлось бы проделать дыру в ограждение, чтобы добраться даже до точки, где они связаны вместе. Это не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали его поворот более трудным, чем того стоит беда.

    Но на реверсивных двигателях этикетка всегда указывает, что нужно поменять местами два провода, чтобы перевернуть его

    Провода для реверса — это всегда провода, ведущие к обмотке стартера.

    Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет электрическое сопротивление примерно в три раза больше, чем основное обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, вы можете перевернуть мотор.Если, однако, есть только из обмоток выходят три провода, затем основная и пусковая обмотки один конец связан вместе, и двигатель не реверсивный.

    Для 120-вольтового двигателя мощностью 1/2 л.с. основная обмотка обычно имеет около 1,5 Ом, а обмотка стартера около 4 Ом. Для 240 вольт 1/2 л.с. двигатели (только 240 вольт), вы должны ожидать около 6 Ом на основной обмотке и 16 Ом на обмотке стартера. Ожидайте, что сопротивление обмоток будет обратно пропорционально мощности.

    У многих двигателей от обмоток отходят несколько дополнительных проводов. Часто к обмоткам прикрепляют термовыключатель, и этот выключатель может быть частично привязан к одной из обмоток. Также, если мотор можно переподключить на 120 и 240 вольт, основная обмотка будет состоять двух обмоток на 120 В, которые можно соединить последовательно или параллельно. Так что от обмоток может выходить довольно много проводов. Это может занять немного времени и поисков, чтобы понять это.

    Для двигателей, которые могут быть подключены как на 120 В, так и на 240 В, стартер обмотка — обмотка на 120 вольт.Когда эти двигатели подключены к 240 вольт, основная обмотка используется как автотрансформатор, чтобы сделать 120 вольт для обмотки стартера. В противном случае переподключение мотора от 120 до 240 вольт было бы намного сложнее!

    Двигатели с конденсаторным запуском: схема и объяснение того, как конденсатор используется для запуска однофазного двигателя

    Однофазный асинхронный двигатель может быть выполнен с возможностью самозапуска различными способами. Один из часто используемых методов — это двигатели с расщепленной фазой. Другой метод — это индукционные двигатели с конденсаторным пуском.

    Индукционные двигатели с конденсаторным пуском

    Нам известно об активности конденсатора в чистой цепи переменного тока. Когда конденсатор вводится таким образом, напряжение отстает от тока на некоторый фазовый угол. В этих двигателях необходимая разность фаз между Is и Im достигается за счет включения конденсатора последовательно с обмоткой стартера. В этих двигателях используются конденсаторы электролитического типа, которые обычно видны, поскольку они установлены вне двигателя как отдельный блок. (щелкните изображение, чтобы увеличить его).

    Во время пуска, поскольку конденсатор включен последовательно с обмоткой пускателя, ток через обмотку пускателя Is опережает напряжение V, которое прикладывается к цепи. Но ток через основную обмотку Im по-прежнему отстает от приложенного напряжения V. Таким образом, чем больше разница между Is и Im, тем лучше результирующее вращающееся магнитное поле.

    Когда двигатель достигает примерно 75% скорости полной нагрузки, центробежный переключатель S размыкается и, таким образом, отсоединяет обмотку стартера и конденсатор от основной обмотки.Из векторной диаграммы важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с расщепленной фазой. Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Из векторной диаграммы видно, что ток через обмотку пускателя Is опережает напряжение V на небольшой угол, а ток через основную обмотку Im отстает от приложенного напряжения. Следует принимать во внимание, что результирующий ток I небольшой и почти синфазен с приложенным напряжением V.

    Крутящий момент, развиваемый асинхронным двигателем с расщепленной фазой, прямо пропорционален синусу угла между Is и Im. Также угол составляет 30 градусов в случае двигателей с расщепленной фазой. Но в случае асинхронных двигателей с конденсаторным пуском угол между Is и Im составляет 80 градусов. Тогда очевидно, что только увеличение угла (с 30 градусов до 80 градусов) увеличивает пусковой крутящий момент почти вдвое по сравнению со стандартным асинхронным двигателем с расщепленной фазой.Кривая характеристики «скорость-крутящий момент» показывает пусковой и рабочий крутящие моменты асинхронного двигателя с конденсаторным пуском.

    Типы двигателей

    Существуют различные типы двигателей с конденсаторным пуском, разработанные и используемые в различных областях. Это:

    1. Одно напряжение, внешне реверсивное,
    2. Одно напряжение, нереверсивное,
    3. Одно напряжение, реверсивное, с термостатом,
    4. Одно напряжение, нереверсивное, с магнитным переключателем Тип,
    5. Двухвольтный, нереверсивный тип,
    6. Двухвольтный, реверсивный тип,
    7. Одно-напряжение, трехпроводный, реверсивный тип,
    8. Одно-напряжение, мгновенно-реверсивный тип,
    9. Двухскоростной тип , и
    10. Двухскоростной с двухконденсаторным типом.

    Эти двигатели могут использоваться для различных целей в зависимости от потребностей пользователя. Пусковые характеристики, характеристики скорости / крутящего момента каждого из вышеперечисленных двигателей могут быть проанализированы перед их использованием в работе.

    Моя следующая статья об однофазных двигателях с расщепленными полюсами; Вы можете прочитать это здесь.

    Изображение предоставлено:

    www.tpub.com

    www.allaboutcircuits.com

    A / C-D / C Machines от A.K & B.L. Тераджа.

    Подключение двигателя 380 В к сети 220 В с помощью конденсаторов и преобразователей частоты

    Очень часто требуется подключение электродвигателя 380В к сети 220В. В промышленности в основном используются асинхронные двигатели, но они питаются от трехфазной сети. В быту таких условий нет, в любом доме только одна фаза и ноль. Но только мощность однофазных двигателей не удовлетворяет пользователей, гораздо эффективнее использовать трехфазные асинхронные.Однако при питании от однофазной цепи пропадает мощность (но она все равно больше, чем для однофазных цепей).

    Как подключить двигатель к сети 380В

    Доступны всего два варианта подключения обмоток асинхронных двигателей:

    1. По схеме «звезда».
    2. По схеме «треугольник».

    Последняя схема соединения обмоток характеризует большую мощность, отдаваемую приводом. Однако при включении двигателя индуцируется высокий пусковой ток, что очень опасно для любого бытового прибора.Если подключать по схеме «звезда», можно добиться наиболее плавного пуска двигателя, т. К. Ток небольшой. Вы не можете получить от привода большой мощности.

    Схема подключения двигателя 380В к сети 220В выполнена «треугольником» для достижения максимальной мощности. При питании от 380В обмотки соединяются «звездой». В противном случае высокое напряжение при запуске увеличивает пусковой ток. Это может повредить электропривод. При нехватке мощности можно запустить двигатель с соединенными звездой обмотками, а после перехода в рабочий режим произвести коммутацию и включить обмотки треугольником.

    Особенности схем подключения

    На статоре любого асинхронного двигателя имеется три обмотки, каждый из которых имеет два вывода. Провода подключаются к контактам под крышкой. Чтобы соединить все шесть контактов (три начала обмотки и столько же концов), необходимо правильно поставить перемычки. Соединить звездой очень просто:

    1. С помощью перемычек соединяются все начала обмоток.
    2. Электропитание подводится к концам обмоток.

    Соединение треугольника выполняется следующим образом: каждое начало обмотки соединяется с концом следующей. Вы можете выбирать порядок намотки произвольно. Если контакты правильно установлены в коробке, то перемычку необходимо установить таким образом:

    Питание от одной фазы

    Подключение двигателя 380В к сети 220 В без конденсаторов можно производить только двумя способами:

    1. Используйте преобразователь частоты. Стоят такие устройства довольно дорого — самые простые стоят от 5000 рублей и выше.Но с их помощью можно осуществлять плавный пуск и остановку мотора, регулировать скорость вращения. Самое главное, чтобы мощность двигателя была сохранена. Это достигается за счет того, что преобразователь частоты включен в однофазную сеть 220 В. А на выходе устройства путем многочисленных преобразований появляются три фазы.
    2. Примените более массивную конструкцию, допускающую фазовый сдвиг. Он сделан из обмотки статора старого асинхронного двигателя.Недостаток — большие габариты конструкции и значительные потери мощности.

    Если не хотите усложнять конструкцию, проще использовать конденсаторы для питания двигателя.

    Использование конденсаторов с двигателями малой мощности

    При подключении электродвигателя к трехфазной сети, то на каждый начальный вывод обмоток подается фаза, а на конце каждой обмотки — ноль (при подключении звездой ). Подключение электродвигателя 380 В к сети 220 В через стартер повысит удобство использования.В бытовой сети только одна фаза и ноль. При включении мотора обмотки необходимо соединить треугольником, чтобы можно было добиться максимальной мощности.

    Для запуска двигателей малой мощности используйте только один конденсатор. С этим элементом происходит фазовый сдвиг. В трехфазной сети все фазы сдвинуты друг относительно друга на 180 градусов. Сделать подключение к сети 220В, нужно соединить обмотки треугольником, одну вершину направить в ноль, на вторую фазу, третью подключить к выводу конденсатора.Причем второй вывод конденсатора должен быть подключен к нулю или фазе (в зависимости от того, какое направление вращения ротора необходимо).

    Подключение мощных двигателей

    Для запуска мощного асинхронного двигателя необходимо использовать два конденсатора — пусковой и рабочий. Они соединены параллельно, но пуск переключается с помощью переключателя. Этот конденсатор предназначен для увеличения пускового момента, для перевода двигателя в установившийся режим.

    Для запуска пускового конденсатора используйте пакетный переключатель. При полном нажатии кнопки пуска включаются силовой и вспомогательный контакты. При отпускании кнопки открываются дополнительные, пусковой конденсатор исключается из схемы. Происходит только подача напряжения на обмотки электродвигателя (и рабочий конденсатор). Такие схемы хорошо зарекомендовали себя в конструкциях различных фрез, фрез, сверлильных станков.

    Двигатель 60 Гц, работающий от источника питания 50 Гц, или наоборот.

    Электродвигатели, как однофазные, так и трехфазные, предназначены для работы на определенной частоте сети.Но иногда мы можем использовать «неправильный» мотор в блоке питания.

    Базовая частота вращения об / мин прямо пропорциональна частоте Гц. Если вы уменьшите частоту источника питания, двигатель замедлится. Напротив, если вы увеличите частоту, двигатель ускорится. Изменение частоты вращения пропорционально изменению частоты вращения.

    Двигатель 60 Гц будет работать на 20% медленнее при питании от источника питания 50 Гц
    Это также приводит к снижению мощности на 20%. По сути, более медленная работа электрической машины обычно означает, что она потребует меньше энергии.Это хорошо, поскольку мощность двигателя также снижается на 20%, а вентилятор охлаждения тоже замедляется. Но решающим фактором здесь является соотношение В / Гц. Подорожает на 20%! Нехорошо. Это означает, что во время части каждого цикла линии электропередачи магнитная структура двигателя, вероятно, будет перегружена.

    Единственный выход здесь — скорректировать В / Гц с помощью легко изменяемого значения переменной — V напряжения. Понизьте напряжение с помощью трансформатора, чтобы скорректировать соотношение В / Гц.

    Двигатель 50 Гц будет работать на 20% быстрее от источника питания 60 Гц
    Киловатт двигателя переменного тока пропорционален крутящему моменту, умноженному на обороты.Поскольку крутящий момент двигателя не будет существенно меняться с увеличением частоты, теперь он будет выдавать на 20% больше мощности. Двигатель мощностью 10 кВт 50 Гц будет двигателем мощностью 12 кВт с источником питания 60 Гц.

    Работа машины на 20% быстрее, скорее всего, увеличит ее потребность в энергии как минимум на 20%! Если во время работы машина циклически ускоряется или замедляется, на нее будут действовать большие механические силы. Если двигатель приводит в движение центробежные нагрузки, их потребность может даже возрасти в квадрате увеличения скорости.

    Случай 1: у вас есть мощность 60 Гц для оборудования 50 Гц
    Допустим, вы только что приобрели хорошее оборудование. Когда он был подключен, вы поняли, что на его паспортной табличке указано 50 Гц, а у вас есть источник питания 60 Гц.

    Оборудование будет работать на 20% быстрее! Это будет проблемой? Если это так, можно ли вернуть скорость к расчетной, изменив размер шкива, чтобы снизить скорость на 20% до прежнего значения?

    После того, как эта оценка будет выполнена и шкивы заменены или выполнены другие модификации, чтобы помочь уменьшить проблемы со скоростью / мощностью, переходите к следующему шагу.Прочтите паспортную табличку, чтобы узнать силу тока полной нагрузки, обычно известную как номинальное значение FLA для двигателя при том напряжении, с которым он будет работать.

    Используя токоизмерительные клещи, запустите машину и убедитесь, что сила тока ниже FLA. Если это так, вы можете продолжить работу с оборудованием по своему усмотрению. Убедитесь, что он все еще находится под FLA при полной загрузке. Если это через FLA, вы должны сделать какое-то смягчение нагрузки.

    Случай 2: у вас есть мощность 50 Гц для устройства 60 Гц
    Вы получаете прибор, и, поскольку вы используете источник питания с частотой 50 Гц, этикетка с частотой 60 Гц вас беспокоит.Как и должно быть!

    Опять же, учитывая, что устройство будет работать на 20% медленнее, выполнит ли оно свою работу? В этом случае вы не можете изменить размер шкива, чтобы скорректировать скорость, потому что двигатель только что потерял 20% мощности, указанной на паспортной табличке. Если вы замените шкивы, они, скорее всего, будут серьезно перегружены.

    Если прибор может работать на 20% медленнее, надежда еще есть. Даже если он потеряет охлаждение из-за того, что его внутренний вентилятор будет работать медленнее, работа нагрузки будет медленнее и с двигателем, который будет на 20% менее мощным, скорее всего, выровняется.Увеличение В / Гц все еще может вас достать.

    На этом этапе, если ваша оценка показывает, что вы, вероятно, будете в порядке с меньшей скоростью, еще раз проверьте паспортную табличку для FLA. Запустите прибор и быстро проверьте рабочий ток с помощью амперметра. Если он ниже FLA, продолжайте загружать устройство, внимательно наблюдая за происходящим. Если вы останетесь ниже FLA, вероятно, все будет в порядке.

    Но! Запуск на FLA сейчас, когда охлаждающий вентилятор снизил производительность, все еще, возможно, будет проблемой.Вам следует следить за температурой двигателя и убедиться, что после продолжительного времени работы под нагрузкой она остается ниже значения, указанного на паспортной табличке.

    Если даже без нагрузки вы видите FLA или больше, вам нужно будет снизить напряжение, потому что двигатель, вероятно, насыщается. Прежде чем возиться с добавлением понижающих трансформаторов, серьезно подумайте о замене двигателя на правильный источник питания 50 Гц. Помните, что вам может потребоваться увеличить номинальную мощность в киловаттах, если вы собираетесь изменить передаточное число, чтобы вернуть оборудование к исходной скорости.

    Ремонт двигателей — Как отремонтировать основные устройства: советы и рекомендации

    Двигатели основных устройств обычно надежны и долговечны. Вы можете продлить их жизнь и повысить их эффективность, если будете содержать их в чистоте и хорошо смазывать. Разумно используйте электроприборы. Не перегружайте их, не злоупотребляйте ими и не игнорируйте проблемы, пока они не станут серьезными.

    Существует несколько основных правил эксплуатации электроприборов:

    • Всегда подключайте электроприбор к соответствующему источнику питания; прибор на 220-240 вольт необходимо подключать к розетке 220-240 вольт.Если розетка основного прибора не заземлена, используйте заземленную вилку адаптера для заземления прибора.
    • Никогда не пользуйтесь мокрыми небольшими приборами и никогда не включайте их, пока у вас мокрые руки. Если большой прибор, такой как стиральная машина или сушилка, намокнет, не включайте его и не пытайтесь отключить от сети. Перед тем, как снова использовать прибор, обратитесь к специалисту для проверки двигателя.
    • Никогда не перегружайте прибор. Перегрузка вызывает неэффективную работу и перегрев двигателя, а также может вызвать чрезмерный износ.Если двигатель выключается из-за перегрузки, уменьшите нагрузку перед перезапуском устройства.

    Универсальные двигатели Универсальные двигатели состоят из ротора, называемого якорем, с намотанными на него катушками проволоки, и вращающегося цилиндра, называемого коммутатором, с чередующимися полосами проводящего и непроводящего материала. Якорь и коммутатор установлены на валу двигателя. С каждой стороны коммутатора угольная щетка пропускает ток из цепи. Когда угольные щетки прижимаются к коллектору, якорь намагничивается и вращается.Большинство универсальных двигателей также имеют охлаждающий вентилятор на конце вала. Универсальные двигатели используются во многих бытовых приборах малого и среднего размера. Они обеспечивают высокую мощность как на низких, так и на высоких скоростях. Универсальные двигатели могут работать как от переменного, так и от постоянного тока. Их скорость регулируется реостатом, регулятором отводимого поля, выпрямителем или регулятором, либо физическим перемещением угольных щеток от якоря.

    Большинство универсальных двигателей имеют постоянную смазку и пломбы на заводе-изготовителе и не требуют дополнительного внимания.Однако некоторые универсальные двигатели имеют закрытые отверстия для смазки, обычно с маркировкой «масло» на концах вала двигателя. Этот тип двигателя следует смазывать каждые шесть месяцев или в соответствии с инструкциями производителя. Поднимите крышки каждого порта и нанесите одну-две капли неочищающего моторного масла № 30 (не универсальное масло). Не смазывайте слишком много.

    Многие универсальные неисправности двигателя вызваны износом угольных щеток, мягких угольных блоков, которые завершают электрический контакт с коммутатором двигателя.Когда эти щетки изнашиваются, в двигателе возникает искра, и электрический контакт может быть неполным. Вы можете решить обе проблемы, заменив кисти.

    Щетки можно проверить визуально или с помощью прибора для проверки целостности цепи. Вот как это сделать:

    Шаг 1: Чтобы осмотреть угольные щетки, снимите винты, которые удерживают щетки и пружины щеток в держателях щеток по бокам коллектора. Винты выскочат из отверстий для винтов; переверните мотор, чтобы выбить щетки.Концы щеток должны быть изогнутыми, чтобы соответствовать коммутатору; если они изношены, нужны новые щетки.

    Шаг 2: Чтобы проверить угольные щетки прибором для проверки целостности цепи, отсоедините подводящие провода двигателя от цепи. Пометьте провода, когда вы их отсоединяете, чтобы вы могли правильно их подключить. Подсоедините зажим тестера к одному проводу двигателя и коснитесь щупом другого провода; тестер должен светиться или гудеть. Медленно вращайте вал двигателя, удерживая тестер на месте.Если тестер не горит и не гудит, или если он мерцает или заикается при повороте вала двигателя, щетки следует заменить. Если пружины за щетками повреждены, их также следует заменить.

    Шаг 3: Замените изношенные угольные щетки и поврежденные пружины на новые, изготовленные специально для двигателя. Информация о модели (номер и производитель) выбита на металлической пластине, прикрепленной к двигателю, или выбита на металлическом корпусе двигателя. Если вы не можете найти информацию о модели, возьмите изношенные щетки и пружины в магазин запчастей, чтобы убедиться, что вы выбрали нужный тип.Вставьте новые пружины и щетки в держатели щеток, замените узлы щеток и закрепите новые щетки крепежными винтами, которыми крепились старые щетки.

    Не пытайтесь отремонтировать универсальный двигатель другим способом. В случае серьезной неисправности купите новый двигатель или отнесите неисправный двигатель в ремонт для ремонта. Большинство больших универсальных двигателей крепятся к пластинчатым опорам. Чтобы снять двигатель, отсоедините провода и снимите удерживающие болты и все имеющиеся ремни.Если неисправный мотор находится в небольшом приборе, отнесите его в ремонтную мастерскую. Иногда бывает дешевле купить новый прибор, чем отремонтировать старый.

    Двигатели с разделенной фазой

    Двигатели с разделенной фазой состоят из ротора, вращающегося внутри статора (неподвижная часть двигателя), который имеет две проволочные катушки: пусковую обмотку и рабочую обмотку. Когда двигатель запускается, ток течет через обе обмотки, но когда ротор достигает примерно 75-80 процентов своей максимальной скорости, пусковая обмотка отключается, и только работающая обмотка получает ток.Электродвигатели с расщепленной фазой работают от переменного тока. Они довольно мощные и используются в стиральных, сушильных и посудомоечных машинах.

    Эти двигатели не требуют обслуживания, кроме чистки и смазки. Двухфазные двигатели имеют специальную вспомогательную обмотку — пусковую. Не пытайтесь ремонтировать самостоятельно. В случае неисправности двигателя купите новый или отнесите неисправный двигатель специалисту по обслуживанию, в зависимости от того, что будет дешевле. Вы можете сэкономить на обращении в сервисную службу, сняв старый двигатель с крепления и самостоятельно установив отремонтированный или новый.

    Двигатели с конденсаторным запуском

    Двигатель с конденсаторным запуском — это двигатель с экранированными полюсами, в котором к пусковой обмотке подключен конденсатор (устройство накопления энергии). Конденсатор накапливает ток и выпускает его импульсами, обеспечивая дополнительную пусковую мощность. Когда двигатель достигает примерно 75 процентов своей максимальной скорости, пусковая обмотка отключается. Двигатели с конденсаторным пуском работают от переменного тока. Они очень мощные и используются в устройствах, требующих высокого пускового момента или крутящего момента, таких как кондиционеры и печи.

    Двигатели с конденсаторным пуском требуют регулярной чистки, чтобы на них не оставалось ворса и масла. Вентиляция двигателя должна быть адекватной. Если в двигателе есть отверстия для масла, поднимите крышку каждого отверстия и нанесите одну-две капли неочищающего моторного масла № 30 (не универсального масла). Не смазывайте слишком много.

    Двигатели с конденсаторным запуском, как правило, труднодоступны и имеют конденсатор и специальные вспомогательные обмотки. Не пытайтесь ремонтировать самостоятельно. В случае неисправности двигателя вызовите специалиста по обслуживанию.

    Осторожно: Конденсаторы накапливают электричество даже после отключения питания прибора. При работе с двигателем с конденсаторным пуском необходимо разрядить конденсатор с помощью резистора с проволочной обмоткой на 20000 Ом и мощностью 2 Вт, как указано для каждого прибора.

    Как и в случае с большинством самостоятельных проектов, ремонт собственной бытовой техники может сэкономить ваше время и деньги.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *