Содержание

Параллельное соединение обмоток трансформатора для увеличения тока

Параллельное соединение трансформаторов

Соединение обмоток трансформаторов. Часть 1

Давайте попробуем разобраться, как можно соединить между собой обмотки трансформатора. Будем разбираться с обычными, довольно маломощными трансформаторами, которые применяются в электронике.

Если посмотреть на схему трансформатора, то иногда можно заметить точки у некоторых выводов обмоток (пример).

Точки на графическом обозначении у краёв обмоток трансформатора обозначают начала этих обмоток.

Следует отметить, что точка, поставленная у одного из выводов обмотки, характеризуют направление намотки обмотки, от чего зависит полярность мгновенного значения напряжения между выводами данной обмотки (говоря по-научному — фаза выходного напряжения). Выводы, обозначенные точками, условно называются началами обмоток, а противоположные — концами обмоток.

Обозначения одноименных выводов обмоток условно: точки можно перенести на противоположные выводы всех обмоток одного и того же трансформатора — соотношение фаз выходных напряжений обмоток между собой не изменится.

Иногда, для упрощения понимания показываемого соединения обмоток, ставят значки «плюс» и «минус» у выводов обмоток (пример). Эти знаки соответствуют мгновенной полярности выходного (или входного) напряжения на данной обмотке. Все напряжения и токи обмоток — переменные, то есть периодически меняют своё направление (полярность) и величину, но если брать в рассмотрение один, очень короткий момент времени, то можно рассматривать вполне определенную полярность и значение выбранной физической величины.

Значение и направление переменной величины, соответствующее данному моменту времени, называется мгновенным значением переменной величины.

Естественно, что у всех точек у одного трансформатора, в данный момент времени будет «плюс» (или «минус» — по нашему усмотрению), а у противоположного вывода обмотки — «минус» (или, соответственно — «плюс»).

Знание выводов начала и конца обмоток значительно облегчает правильное соединение обмоток между собой или их правильное включение в электрическую схему, когда её работа зависит от взаимной фазировки подводимых напряжений.

Фазы подводимого к трансформатору напряжения (напряжения на первичной обмотке) и напряжений на вторичных обмотках совпадают.

Последовательное соединение первичных обмоток трансформатора.

Наиболее часто последовательное соединение первичных обмоток применяется в трансформаторах, выполненных на П-образном сердечнике с неразветвленным магнитным потоком (например сердечники типа ПЛ), обмотки которых выполнены симметрично на двух катушках (Рис. 1.).

Рис. 1. Внешний вид трансформатора на сердечнике типа ПЛ.

В этом случае обмотки включаются последовательно согласно (синфазно). Рабочее напряжение, подводимое к соединённым подобным образом обмоткам, равно сумме рабочих напряжений каждой из обмоток. Подробно включение обмоток подобных трансформаторов рассматривается далее.

Встречное (противофазное) включение первичных полуобмоток, выполненных на общем сердечнике типа ПЛ — запрещено. Данные полуобмотки, выполненные на двух абсолютно одинаковых катушках, имеют одинаковые параметры. При встречном включении их индуктивности взаимно компенсируются, и общая индуктивность всей первичной обмотки становится равной нулю. Поэтому нагрузкой сети будет являться только активное сопротивление провода этих обмоток, которое составляет доли ома. Результат — выход трансформатора из строя.

Сейчас более тщательно рассмотрим последовательное включение первичных обмоток двух различных трансформаторов (Рис. 2а). Показанная схема приводилась, как рекомендуемая, на одном из форумов. Вопрос стоял так:

«…как соединить два одинаковых трансформатора с первичными обмотками по 110 вольт, если допустимый ток вторичных обмоток — 2А, а для лабораторного двуполярного блока питания нужен ток не менее 3А?»

Рис. 2. Последовательное включение первичных обмоток трансформаторов.

Пока не будем рассматривать соединение вторичных обмоток, а сосредоточимся на соединении первичных. На Рис. 2б приведена эквивалентная схема включения входных цепей двух трансформаторов. RэTV1 — эквивалентное сопротивление трансформатора TV1, RэTV2 — TV2. В режиме холостого хода (без нагрузки) или при одинаковой нагрузке трансформаторов напряжение сети Uсети делится поровну между одинаковыми эквивалентными сопротивлениями и составляет 110 В.

Из схемы видно, что трансформатор TV1 питает цепь только положительного выходного напряжения, а трансформатор TV2 — только отрицательного. Вполне возможен режим работы, когда вся нагрузка подключается только, например, к выходу положительного напряжения, а отрицательный вывод лабораторного БП остается отключенным. Тогда вся нагрузка приложена к трансформатору TV1, а TV2 при этом работает практически в режиме холостого хода.

Соотношение эквивалентных входных сопротивлений трансформаторов изменяется. Эквивалентное входное сопротивление трансформатора TV1 падает, а эквивалентное сопротивление трансформатора TV2 остается неизменным. Поэтому напряжения на первичных обмотках трансформаторов также изменяются — напряжение на входе TV1 — UTV1 уменьшается, а на входе TV2 увеличивается на эту же величину, так как их сумма (напряжение сети) остается неизменной. То есть, это явление может привести к значительной перегрузке трансформаторов по величине входного напряжения и, при длительном её воздействии, даже к выходу их из строя.

Дополнительная нестабильность входного напряжения двух трансформаторов, которая возникает из-за последовательного включения их первичных обмоток, не добавляет популярности подобному включению, поэтому на практике оно применяется крайне редко.

Коротко условия последовательного включения первичных обмоток трансформаторов можно сформулировать следующим образом:

  • последовательно можно включить первичные обмотки двух конструктивно одинаковых трансформаторов с одинаковыми параметрами;
  • нагрузки обоих трансформаторов в процессе работы должны быть равны друг другу при любом режиме работы (от холостого хода до полной нагрузки).

В полной мере этим условиям удовлетворяют только разделенные на две одинаковые катушки обмотки трансформаторов на сердечниках типа ПЛ. Поэтому последовательное включение первичных полуобмоток широко применяется практически только в этих трансформаторах для взаимного соединения одинаковых половин обмоток одного трансформатора.

Параллельное соединение первичных обмоток трансформаторов.

Пример параллельного включения первичных обмоток двух трансформаторов питания приведен на Рис. 3.

Параллельное соединение первичных обмоток трансформаторов применяется каждым из нас практически ежедневно. Каждый день мы включаем в общую сеть ~220 вольт множество электронной аппаратуры, оснащенной силовыми трансформаторами питания. При этом никаких вопросов и сомнений по поводу мощности или фазировки первичных обмоток этих трансформаторов у нас не возникает.

Поэтому можно сделать вывод, что параллельно можно включать первичные обмотки трансформаторов любой мощности и любой конструкции. Взаимная фазировка первичных обмоток имеет смысл только при непосредственном соединении между собой также и вторичных обмоток подключаемых трансформаторов, например, как показано на Рис. 3.

Рис. 3. Параллельное соединение первичных обмоток трансформаторов.

Последовательное соединение вторичных обмоток трансформатора.

Чаще всего применяется последовательное соединение вторичных обмоток трансформаторов. Пример такого соединения приведен на Рис. 4а — согласное (синфазное) соединение, Рис. 4б — встречное (противофазное) соединение.

Рис. 4. Последовательное включение вторичных обмоток трансформатора.

При синфазном соединении конец одной обмотки соединяется с началом другой. Результирующее выходное напряжение такого соединения будет равно сумме выходных напряжений каждой обмотки, так как переменные выходные напряжения обмоток находятся в фазе.

Сложение синфазных величин описано в статье Фаза. Разность фаз. Также, для упрощения, рядом с выводами обмоток на рисунке поставлены знаки «плюс» и «минус», которые указывают полярность мгновенного значения напряжения. При последовательном соединении источников постоянного тока с указанной на Рис. 4а полярностью их выходные напряжения сложаться. Это упрощает понимание и запоминание сложения (или вычитания) переменных величин и нетрудно проверить экспериментально, например, на обычных батарейках.

Максимальная величина тока, получаемого от такой составной обмотки, не должна превышать меньший из максимально допустимых токов у любой из соединяемых обмоток. В противном случае — перегрев более слабой по току обмотки (меньший диаметр провода), выход трансформатора из строя.

Практически все взаимные подключения вторичных обмоток трансформаторов производятся последовательно-синфазно. Этим способом можно соединять обмотки с любым напряжением и максимально-допустимым током.

Если в рассмотренном выше соединении вторичных обмоток трансформатора поменять местами выводы любой из обмоток, то мы получим противофазное соединение (Рис. 4б). При таком соединении начало одной обмотки соединяется с началом другой или конец одной с концом другой. Действительно, выходные напряжения каждой из обмоток находятся в противофазе друг к другу, что подтверждают знаки «плюс» и «минус», поставленные рядом с выводами.

При таком соединении выходное напряжение будет равно разности напряжений обмоток. Подробно сложение противофазных величин описано в статье Фаза. Разность фаз.

Напряжения и максимально-допустимые токи каждой из обмоток могут быть любыми. То есть все особенности этого подключения, как и у последовательно-синфазного способа. И, так-же, максимальная величина тока, получаемого от такой составной обмотки, не должна превышать меньший из максимально допустимых токов у любой из соединяемых обмоток.

Для понимания работы противофазного соединения обмоток одного трансформатора удобно представить их в виде встречно включенных бифилярных обмоток. В такой бифилярной катушке магнитный поток, создаваемый током каждого витка одной обмотки, компенсируется магнитным потоком, создаваемым током через соответствующий виток другой обмотки. Суммарный поток соответствующих витков обеих катушек равен нулю (Рис. 5).

Рис. 5. Бифилярная намотка, не обладающая индуктивностью.

Общий поток суммы компенсирующих друг друга витков также равен нулю, поэтому не оказывает никакого влияния на магнитный поток сердечника и, таким образом, никак не влияет на мощность, потребляемую из сети. Но остаются витки в большей из обмоток, магнитный поток которых не компенсируется витками другой обмотки. Вот только эта избыточная часть витков большей обмотки и будет в полной мере учавствовать в работе трансформатора.

Основной недостаток такого соединения — увеличение сопротивления составной обмотки по сравнению с отдельной обмоткой на это же выходное напряжение (соответственно увеличение расхода меди, увеличение места, занимаемого обмотками, снижение КПД трансформатора).

Совсем другая картина возникает при встречном (противофазном) соединении обмоток разных трансформаторов. В этом случае катушки нельзя рассматривать, как бифилярные — сердечники у трансформаторов разные и магнитные потоки каждой обмотки никак не взаимодействуют друг с другом, потому что сосредоточены каждый в своём сердечнике.

Поэтому мощность, потребляемая от сети больше и равна сумме мощностей каждой отдельной обмотки, в отличие от тех же обмоток на одном трансформаторе, где мощность получаемая от сети примерно равна мощности только нескомпенсированной части большей обмотки. Напряжение составной обмотки всё также равно разности напряжений входящих в неё обмоток.

Последовательно-противофазное включение обмоток применяется очень редко, практически только для экспериментальных целей.

Параллельное соединение вторичных обмоток трансформатора.

Параллельное соединение вторичных обмоток может применятся, если ток, получаемый от одной обмотки, слишком мал для нормальной работы устройства. В этом случае можно соединить параллельно несколько обмоток с одинаковыми выходными напряжениями. Результирующий выходной ток такого соединения будет равен сумме выходных токов каждой обмотки. Выходное напряжение равно выходному напряжению одной обмотки.

Параллельное соединение вторичных обмоток показано на Рис 6.

Рис. 6. Параллельное включение вторичных обмоток трансформатора.

Рассмотрим требования, предъявляемые к обмоткам при их параллельном соединении.

  • Применяется только синфазное параллельное соединение обмоток (Рис 6а).

При параллельном-синфазном соединении начало одной обмотки соединяется с началом второй, конец первой — с концом второй.

При противофазном параллельном соединении (Рис 6б), начало одной обмотки соединяется с концом другой (получается последовательное синфазное соединение — выходное напряжение равно сумме выходных напряжений каждой обмотки), оставшиеся свободные концы так-же соединяются — получается короткое замыкание общей, объединенной обмотки и выход трансформатора из строя.

Поэтому параллельное противофазное соединение обмоток применять нельзя, что и показано на Рис. 6б.

  • Параметры соединяемых обмоток (выходное напряжение и максимально-допустимый ток) должны быть одинаковы.

Лучше соединять параллельно одинаковые обмотки одного трансформатора. Допускается разброс параметров обмоток до 3%. При увеличении разброса параметров возникают уравнивающие токи между параллельно соединенными обмотками трансформатора, которые никак не попадают в нагрузку и могут достигать значительной величины. Это резко снижает КПД трансформатора, увеличивает его нагрев, может привести к выходу из строя.

А мы рассмотрим специфику соединения обмоток трансформаторов, выполненных на сердечниках типа ПЛ. Основная особенность таких трансформаторов состоит в том, что их обмотки выполняются в виде двух абсолютно одинаковых катушек, располагаемых на двух разных кернах одного сердечника (посмотреть).

Конечно, существуют трансформаторы на стержневых сердечниках, обмотки которых выполнены на одной катушке (пример). Но подключение их обмоток ничем не отличается от описанных в части 1 этой статьи, поэтому сейчас они не рассматриваются.

Все обмотки трансформатора делятся пополам. Каждая полуобмотка наматывается на своей катушке. При включении в схему все полуобмотки одной катушки соединяются с соответствующими полуобмотками другой катушки последовательно-синфазно.

В исключительных случаях допускается параллельное соединение одинаковых полуобмоток одного трансформатора для увеличения отдаваемого тока. Но при этом необходим контроль за изменением режима работы трансформатора, хотя бы по изменению тока холостого хода.

Расположение всех обмоток на двух катушках снижает расход медного провода, улучшает теплоотвод от внутренних витков катушек, дает другие преимущества. Для упрощения и удешевления производства обе катушки наматываются по одной технологической схеме, то есть имеют одинаковое направление намотки. Этот факт немного усложняет правильное взаимное соединение обмоток.

Посмотрим на Рис.1а, где изображена электрическая принципиальная схема трансформатора на сердечнике типа ПЛ с обмотками, расположенными на двух катушках. Номера обмоток и номера выводов одной катушки продублированы и у второй катушки, только со знаком «штрих». Но самое главное, что знаки «точка» (начало обмотки) стоят у выводов с одинаковыми номерами у обеих катушек.

Рис.1. Трансформатор на сердечнике типа ПЛ.

С точки зрения технологии (порядка изготовления катушек) — всё правильно. Намотка обеих катушек начинается, например, от вывода 3 (3’). Теперь посмотрим на Рис.1б, где изображены две одинаковые катушки, с одинаковым направлением намотки на сердечнике. Соединим их между собой, как указано на Рис.1а, то есть конец одной с концом другой.

Также на Рис.1б показано мгновенное направление тока через катушки стрелками зеленого цвета. В скобках около выводов катушек указана мгновенная полярность подводимого переменного напряжения. Теперь определим направление магнитного потока через катушки с помощью правила правой руки для соленоида.

Если обхватить соленоид ладонью правой руки так, чтобы четыре пальца были направлены вдоль тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.

Для удобства над каждой катушкой нарисована ладонь правой руки. Направление магнитного поля внутри катушки указано красной стрелкой. Направление магнитного потока Ф0 внутри сердечника совпадает с направлениями магнитных полей катушек, по величине равно сумме магнитных потоков каждой катушки и показано штрих-пунктирной линией красного цвета.

Если поменять местами выводы любой из катушек, то направление магнитного поля этой катушки изменится на противоположное. Поэтому магнитные потоки каждой катушки в сердечнике будут компенсировать друг друга и общий магнитный поток станет равным нулю.

То есть индуктивное сопротивление такого соединения катушек также станет равным нулю. В цепь переменного тока окажется включенным только лишь сумма активных сопротивлений провода катушек, которая очень мала. Такая ситуация грозит «бытовой катастрофой» и очень опасна для первичных обмоток силовых трансформаторов радиоаппаратуры — может привести к выходу их из строя, а также нанести вред сети ~220 В.

Для упрощения понимания всего вышеизложенного мысленно можно произвести следующее действие. Напоминаю, мысленно разрываем и выпрямляем сердечник с катушками в одну прямую линию. И видим, что точка (начало обмотки) у одной из катушек по «электротехническим понятиям» стоит не на месте, то есть по правилам она должна стоять у противоположного конца. А катушки, как указано на принципиальной электрической схеме, соединены правильно — последовательно-синфазно (соединены начало одной обмотки с концом другой).

Необходимо запомнить, что на принципиальных электрических схемах, при изображении трансформаторов на стержневых сердечниках (например, типа ПЛ) с двумя катушками, точками могут отображаться «технологические начала» обмоток, то есть применяемые при изготовлении (намотке) катушек, которые реально не соответствуют «электротехническим началам» у одной из катушек.

Источник: https://www.elsys.biz/wpblog/?p=1527

Соединение обмоток трансформатора (параллельное, последовательное). _v_

 

 

 

Тема: как соединять обмотки трансформатора, увеличивая ток и напряжение.

 

Трансформатор является электротехническим устройством, которое способно преобразовывать электрическую энергию посредством электромагнитных полей. Конструкция классического трансформатора представляет собой магнитопровод, состоящий из пластин (с хорошими ферромагнитными свойствами) и имеющий замкнутый контур (может быть круглым, Ш-образным, П-образным). На этот ферромагнитный сердечник наматываются обмотки медного провода. Обычно это первичная и вторичная обмотка.

 

Смысл трансформатора заключается в том, что при подачи переменного тока на первичную обмотку вокруг сердечника образуется переменное электромагнитное поле. Это поле порождает во вторичной обмотке ЭДС (электродвижущую силу). Значение тока и напряжения на вторичной намотке будет зависит от пропорциональности количества витков между первичной и вторичной обмоткой. Но и первичная обмотка должна быть рассчитана на свои величины тока и напряжения, поскольку неверное количество витков и сечения провода намоток влияют на КПД трансформатора (коэффициент полезного действия).

 

Намотки трансформатора можно соединять между собой определенным образом. Соединение обмоток трансформатора бывает параллельным, последовательным и смешанным. Итак, у нас имеется трансформатор, у которого есть две первичные обмотки и две вторичные. Его первичные обмотки рассчитаны на переменное напряжение с величиной 110 вольт. Вторичные по 6 вольт. Если у нас сеть на 220 вольт, то мы должны первичные обмотки соединить последовательно (110 + 110 = 220), после чего смело может на эту объединенную первичную обмотку подавать 220 вольт. Хотя если сеть у нас оказалась на 110 вольт, то подавать это напряжение можно на любую намотку, рассчитанную на 110 вольт.

 

 

 

 

Итак, на вторичной обмотке у нас на каждой будет переменное напряжение по 6 вольт. Если мы их объединим последовательно, то в итоге получим удвоенное напряжение 12 вольт. Если же мы эти вторичные обмотки соединить параллельно, то в этом случае напряжение останется прежним, а именно 6 вольт, но вот сила тока уже увеличится вдвое. Учтите, что количество витков у трансформатора влияет на напряжение, а сечение провода намотки на его силу тока. Обязательным условием для параллельного соединения должно быть одинаковость намоток по количеству витков. Если этой одинаковости не будет, то напряжение этой разницы станет негативно влиять на работу трансформатора, уменьшая его КПД и вызывая дополнительный нагрев сердечника.

 

Соединение обмоток трансформатора смешанным типом подразумевает по собой одновременное соединение и параллельными и последовательными способом. В этом случае будет повышаться и сила тока на намотках и напряжение. А что будет если мы будем соединять обмотки трансформатора, имеющие разное сечение? Если это параллельное соединение, то это равносильно тому, что сечение обмоток будет просто суммироваться (будет повышаться сила тока, которое соответствует общему, суммарному сечению провода намоток). Если же это последовательное соединение обмоток трансформатора, то итоговая сила тока будет соответствовать обмотке, у которой наименьший диаметр провода.

 

 

P.S. Наиболее практичным соединением намоток трансформатора можно считать вариант, когда за счет последовательного соединения можно подбирать наиболее подходящее напряжение на вторичной обмотке. Мы наматываем вторичную обмотку с отводами, имеющими определенный шаг (к примеру делаем 10 обмоток, на каждой из которых по 3 вольта). В итоге мы имеем возможность получать любое напряжение от нуля до 30 вольт с шагом в 3 вольта. В этом случае мы имеем наибольшую экономию электроэнергии, в отличии от способа, когда имея на выходе только 30 вольт делаем нужное напряжение за счёт схемы стабилизатора (излишек напряжения расходуется просто в нагрев). Учтите, что при соединении обмоток трансформатора имеет значение их направленность (полярность).

 

Последовательное и параллельное соединение обмоток трансформатора

Тема: как соединять обмотки трансформатора, увеличивая ток и напряжение.

Трансформатор является электротехническим устройством, которое способно преобразовывать электрическую энергию посредством электромагнитных полей. Конструкция классического трансформатора представляет собой магнитопровод, состоящий из пластин (с хорошими ферромагнитными свойствами) и имеющий замкнутый контур (может быть круглым, Ш-образным, П-образным). На этот ферромагнитный сердечник наматываются обмотки медного провода. Обычно это первичная и вторичная обмотка.

Смысл трансформатора заключается в том, что при подачи переменного тока на первичную обмотку вокруг сердечника образуется переменное электромагнитное поле. Это поле порождает во вторичной обмотке ЭДС (электродвижущую силу). Значение тока и напряжения на вторичной намотке будет зависит от пропорциональности количества витков между первичной и вторичной обмоткой. Но и первичная обмотка должна быть рассчитана на свои величины тока и напряжения, поскольку неверное количество витков и сечения провода намоток влияют на КПД трансформатора (коэффициент полезного действия).

Намотки трансформатора можно соединять между собой определенным образом. Соединение обмоток трансформатора бывает параллельным, последовательным и смешанным. Итак, у нас имеется трансформатор, у которого есть две первичные обмотки и две вторичные. Его первичные обмотки рассчитаны на переменное напряжение с величиной 110 вольт. Вторичные по 6 вольт. Если у нас сеть на 220 вольт, то мы должны первичные обмотки соединить последовательно (110 + 110 = 220), после чего смело может на эту объединенную первичную обмотку подавать 220 вольт. Хотя если сеть у нас оказалась на 110 вольт, то подавать это напряжение можно на любую намотку, рассчитанную на 110 вольт.

Итак, на вторичной обмотке у нас на каждой будет переменное напряжение по 6 вольт. Если мы их объединим последовательно, то в итоге получим удвоенное напряжение 12 вольт. Если же мы эти вторичные обмотки соединить параллельно, то в этом случае напряжение останется прежним, а именно 6 вольт, но вот сила тока уже увеличится вдвое. Учтите, что количество витков у трансформатора влияет на напряжение, а сечение провода намотки на его силу тока. Обязательным условием для параллельного соединения должно быть одинаковость намоток по количеству витков. Если этой одинаковости не будет, то напряжение этой разницы станет негативно влиять на работу трансформатора, уменьшая его КПД и вызывая дополнительный нагрев сердечника.

Соединение обмоток трансформатора смешанным типом подразумевает по собой одновременное соединение и параллельными и последовательными способом. В этом случае будет повышаться и сила тока на намотках и напряжение. А что будет если мы будем соединять обмотки трансформатора, имеющие разное сечение? Если это параллельное соединение, то это равносильно тому, что сечение обмоток будет просто суммироваться (будет повышаться сила тока, которое соответствует общему, суммарному сечению провода намоток). Если же это последовательное соединение обмоток трансформатора, то итоговая сила тока будет соответствовать обмотке, у которой наименьший диаметр провода.

Бывает ситуация, когда у трансформатора нет обмотки на нужное напряжение или ток, зато есть много всяких разных обмоток. Что делать?

Для увеличения напряжения, обмотки можно соединять последовательно. При этом общее напряжение будет равно сумме напряжений всех обмоток. Максимальный ток будет равен наименьшему из номинальных токов всех этих обмоток.

Обмотки надо сфазировать, иначе напряжения в них могут не складываться, а вычитаться (можно ра-

ботать и в такой ситуации, но КПД трансформатора снизится). Делается это так: первая и вторая обмотки соединяются последовательно, а к их концам подключается вольтметр переменного тока (рис. 16).

Вольтметр должен показать сумму напряжений обмоток 1 и 2 (это синфазное, или согласное включение обмоток). Если показания вольтметра меньше (в случае противофазного, или встречного включения он покажет разность напряжений обмоток), выводы обмотки 2 надо поменять местами. В случае, когда последовательно соединяется большее количество обмоток, то все повторяется, при этом роль обмотки 1 выполняют уже соединенные обмотки, а роль обмотки 2 – вновь подключаемая обмотка.

На рис. 16 точкой возле обмотки обозначается ее условное начало. Оно имеет такой смысл: если на выводе с точкой первичной обмотки присутствует положительный полупериод напряжения (грубо говоря «плюс»), то и на выводах с точкой всех вторичных обмоток в этот момент также «плюс». Поэтому, зная условные начала обмоток, можно сразу соединить все обмотки синфазно. К сожалению, на самом трансформаторе начала обмоток обычно не обозначают.

Если в трансформаторе много одинаковых вторичных обмоток на маленький ток, то по идее их можно соединить параллельно, тогда общий их ток будет равен сумме токов отдельных обмоток.

На самом деле это очень «тонкий» вопрос. В жизни практически никогда не бывает, чтобы две обмотки были абсолютно одинаковыми. Хоть малюсенькая разница в их напряжениях, но есть. И внутри параллельных обмоток могут возникнуть уравнительные токи иногда маленькой, а иногда и большой величины. Может получиться, что трансформатор здорово греется, а наружу тока почти не выдает. Но бывает и так, что производители мотают трансформатор в несколько проводов одновременно. Тогда обмотки получаются практически совсем одинаковыми и такие обмотки параллельно соединять можно (хотя, ГОСТ 14233-84 «Трансформаторы питания для бытовой аппаратуры» дает допуск на асимметрию обмоток, включаемых параллельно, до 3% от напряжения обмотки – это довольно большое рассогласование!). При этом очень важно правильно сфазировать обмотки, иначе будет короткое замыкание. Только надо быть абсолютно уверенным в том, что обмотки одинаковы. Поэтому давайте для надежности пользоваться таким правилом:

Если производитель явно указывает, что обмотки трансформатора можно соединять параллельно, то можно. Если такого явного указания нет – то нельзя.

Как правильно сфазировать обмотки? Начала всех обмоток соединить вместе – это будет начало общей обмотки. Конец общей обмотки составят соединенные вместе концы всех обмоток.

Если неизвестны начала и концы обмоток, то сначала соедините между собой один провод от одной обмотки и один от другой. Подайте питание на трансформатор и измерьте напряжение между оставшимися концами этих обмоток (рис. 17).

Если между ними напряжение равное удвоенному напряжению каждой из обмоток, то концы одной из обмоток надо поменять местами. Снова подайте питание и снова измерьте напряжение. Если оно равно нулю, то все ОК, соединяете концы, между которыми измеряли напряжение и пользуетесь. Если же напряжение не равно нулю, то обмотки разные, и их паралле- лить нельзя!

А если напряжение на двух обмотках получилось не

ноль, но очень близкое к нулю? Давайте рассмотрим пример. Сопротивление вторичной обмотки тороидального трансформатора 75ВА 2×28В равно примерно 0,5 Ом. Допустим мы хотим получить такую обмотку из двух, каждая из которых рассчитана на вдвое меньший ток. Тогда сопротивление каждой обмотки вдвое выше и будет равно 1 Ом. С точки зрения уравнительных токов обмотки включены последовательно (значит, общее сопротивление удваивается) и к ним прикладывается разность напряжений между обмотками. Допустим, эта разность напряжений равна 0,5 вольт. Тогда уравнительный ток будет

2. Если вольтметр показывает разность напряжений обмоток в точности равную нулю, это означает, что и формы напряжений обмоток, и их величины одинаковы (что уже само по себе редкое явление). Но кто поручится, что при изменении напряжения в сети, или изменении тока, потребляемого нагрузкой, формы токов так одинаковыми и останутся? Это не всегда случается даже у однотипных трансформаторов (из-за разброса свойств стали они могут немного по-разному насыщаться), а для трансформаторов разных типов это вообще нереально.

Поэтому давайте не будем рисковать, и не будем создавать себе возможные проблемы, соединяя параллельно обмотки разных трансформаторов!

Бросок тока при включении трансформатора. При включении трансформатора в сеть даже на холостом ходу возникает всплеск тока (пусковой ток, являющийся следствием переходного процесса в трансформаторе), который может превышать номинальный в десятки раз. Длительность пускового тока обычно не превышает 0,02…0,03 секунды, поэтому он не приводит к перегреву обмоток. Однако в этот момент на проводники обмоток действуют значительные электромагнитные силы, которые могут сдвинуть плохо закрепленные витки. С течением времени витки разбалтываются, и акустический шум трансформатора растет.

Другим неприятным последствием пускового тока является перегорание предохранителя в цепи первичной обмотки.

Величина пускового тока определяется как моментом времени включения (по отношению к начальной фазе сетевого напряжения), так и параметрами трансформатора. В частности, повышение числа витков первичной обмотки снижает пусковой ток, что еще раз говорит в пользу применения трансформаторов с пониженной рабочей индукцией. И наоборот, у трансформатора, работающего близко к насыщению, бросок тока при включении может быть очень большим.

Трансформаторы с пониженной рабочей индукцией. Существует мнение (вполне оправданное), что хорошие результаты дает применение в усилителях трансформаторов с пониженной индукцией, работающих практически на линейном участке кривой намагничивания (конец участка А – начало участка В на рис. 9). Действительно, снижение индукции уменьшает потоки рассеяния, а значит и магнитные поля трансформатора, а также снижает пусковой ток. Это достигается увеличением числа витков в обмотках в 1,2…1,3 раза выше номинального. Уменьшение полей рассеяния снижает индуктивность обмоток, но из-за повышения длины провода, возрастает их активное сопротивление, поэтому просадки напряжения под нагрузкой практически не меняются, а вот нагрев обмоток растет. Для нормализации нагрева увеличивают мощность трансформатора, повышая диаметр проводов обмоток.

Таким образом, чтобы получить трансформатор с пониженной рабочей индукцией, необходимо изготовить трансформатор с мощностью в 1,3…1,5 раз больше требуемой, все обмотки которого рассчитаны на напряжение в 1,2…1,3 раза больше необходимого.

Необходимо отметить, что при этом улучшается только работа самого трансформатора, на усилитель это никак не сказывается (если только магнитные поля трансформатора не действуют на усилитель, но к этому необходимо стремиться в любом случае). Поэтому затраты на такой специальный трансформатор практически никогда не окупаются (кроме техники очень высокого качества, там применение подобного трансформатора не только оправдано, но и зачастую просто необходимо), а в конструкциях начинающих радиолюбителей – наверняка. Поэтому «низкоиндукционный» трансформатор имеет смысл применять, если он уже есть, а если его нет, то и не надо.

Подмагничивание сердечника постоянным током. Трансформатор – устройство, предназначенное для работы на переменном токе (причем только своей, или близкой к ней частоты – если частота тока сильно отличается от номинальной, он может работать хуже или не работать вообще). Постоянный ток он не преобразует, потому что ЭДС в обмотках наводится только изменяющимся магнитным полем, которое получается, если ток переменный. И на постоянный ток не влияет индуктивность обмоток. Поэтому если на трансформатор подать 220 вольт постоянного тока, трансформатор сгорит – активное сопротивление первичной обмотки маленькое, и ток будет огромным.

А что случится, если через обмотку все же протекает постоянный ток? На переменном токе даже очень большие токи обмоток практически не изменяют рабочий магнитный поток, так как влияния первичной и вторичной обмоток взаимно компенсируются. На постоянном токе взаимодействия обмоток и взаимной компенсации токов не происходит. Постоянный ток создаст ничем не компенсируемое магнитное поле, которое будет подмагничивать сердечник, изменяя индукцию в нем. Если это поле достаточно велико, то сердечник начнет насыщаться со всеми вытекающими отсюда последствиями.

Так что появления постоянного тока (заметной величины) в трансформаторе следует избегать. Исключение составляют выходные трансформаторы ламповой техники – в них предусмотрен зазор в сердечнике для исключения насыщения. Но и в таком случае трансформатору работать не очень комфортно.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

Бывает ситуация, когда у трансформатора нет обмотки на нужное напряжение или ток, зато есть много всяких разных обмоток. Что делать?

Для увеличения напряжения, обмотки можно соединять последовательно. При этом общее напряжение будет равно сумме напряжений всех обмоток. Максимальный ток будет равен наименьшему из номинальных токов всех этих обмоток.

Обмотки надо сфазировать, иначе напряжения в них могут не складываться, а вычитаться (можно ра-

ботать и в такой ситуации, но КПД трансформатора снизится). Делается это так: первая и вторая обмотки соединяются последовательно, а к их концам подключается вольтметр переменного тока (рис. 16).

Вольтметр должен показать сумму напряжений обмоток 1 и 2 (это синфазное, или согласное включение обмоток). Если показания вольтметра меньше (в случае противофазного, или встречного включения он покажет разность напряжений обмоток), выводы обмотки 2 надо поменять местами. В случае, когда последовательно соединяется большее количество обмоток, то все повторяется, при этом роль обмотки 1 выполняют уже соединенные обмотки, а роль обмотки 2 – вновь подключаемая обмотка.

На рис. 16 точкой возле обмотки обозначается ее условное начало. Оно имеет такой смысл: если на выводе с точкой первичной обмотки присутствует положительный полупериод напряжения (грубо говоря «плюс»), то и на выводах с точкой всех вторичных обмоток в этот момент также «плюс». Поэтому, зная условные начала обмоток, можно сразу соединить все обмотки синфазно. К сожалению, на самом трансформаторе начала обмоток обычно не обозначают.

Если в трансформаторе много одинаковых вторичных обмоток на маленький ток, то по идее их можно соединить параллельно, тогда общий их ток будет равен сумме токов отдельных обмоток.

На самом деле это очень «тонкий» вопрос. В жизни практически никогда не бывает, чтобы две обмотки были абсолютно одинаковыми. Хоть малюсенькая разница в их напряжениях, но есть. И внутри параллельных обмоток могут возникнуть уравнительные токи иногда маленькой, а иногда и большой величины. Может получиться, что трансформатор здорово греется, а наружу тока почти не выдает. Но бывает и так, что производители мотают трансформатор в несколько проводов одновременно. Тогда обмотки получаются практически совсем одинаковыми и такие обмотки параллельно соединять можно (хотя, ГОСТ 14233-84 «Трансформаторы питания для бытовой аппаратуры» дает допуск на асимметрию обмоток, включаемых параллельно, до 3% от напряжения обмотки – это довольно большое рассогласование!). При этом очень важно правильно сфазировать обмотки, иначе будет короткое замыкание. Только надо быть абсолютно уверенным в том, что обмотки одинаковы. Поэтому давайте для надежности пользоваться таким правилом:

Если производитель явно указывает, что обмотки трансформатора можно соединять параллельно, то можно. Если такого явного указания нет – то нельзя.

Как правильно сфазировать обмотки? Начала всех обмоток соединить вместе – это будет начало общей обмотки. Конец общей обмотки составят соединенные вместе концы всех обмоток.

Если неизвестны начала и концы обмоток, то сначала соедините между собой один провод от одной обмотки и один от другой. Подайте питание на трансформатор и измерьте напряжение между оставшимися концами этих обмоток (рис. 17).

Если между ними напряжение равное удвоенному напряжению каждой из обмоток, то концы одной из обмоток надо поменять местами. Снова подайте питание и снова измерьте напряжение. Если оно равно нулю, то все ОК, соединяете концы, между которыми измеряли напряжение и пользуетесь. Если же напряжение не равно нулю, то обмотки разные, и их паралле- лить нельзя!

А если напряжение на двух обмотках получилось не

ноль, но очень близкое к нулю? Давайте рассмотрим пример. Сопротивление вторичной обмотки тороидального трансформатора 75ВА 2×28В равно примерно 0,5 Ом. Допустим мы хотим получить такую обмотку из двух, каждая из которых рассчитана на вдвое меньший ток. Тогда сопротивление каждой обмотки вдвое выше и будет равно 1 Ом. С точки зрения уравнительных токов обмотки включены последовательно (значит, общее сопротивление удваивается) и к ним прикладывается разность напряжений между обмотками. Допустим, эта разность напряжений равна 0,5 вольт. Тогда уравнительный ток будет

2. Если вольтметр показывает разность напряжений обмоток в точности равную нулю, это означает, что и формы напряжений обмоток, и их величины одинаковы (что уже само по себе редкое явление). Но кто поручится, что при изменении напряжения в сети, или изменении тока, потребляемого нагрузкой, формы токов так одинаковыми и останутся? Это не всегда случается даже у однотипных трансформаторов (из-за разброса свойств стали они могут немного по-разному насыщаться), а для трансформаторов разных типов это вообще нереально.

Поэтому давайте не будем рисковать, и не будем создавать себе возможные проблемы, соединяя параллельно обмотки разных трансформаторов!

Бросок тока при включении трансформатора. При включении трансформатора в сеть даже на холостом ходу возникает всплеск тока (пусковой ток, являющийся следствием переходного процесса в трансформаторе), который может превышать номинальный в десятки раз. Длительность пускового тока обычно не превышает 0,02…0,03 секунды, поэтому он не приводит к перегреву обмоток. Однако в этот момент на проводники обмоток действуют значительные электромагнитные силы, которые могут сдвинуть плохо закрепленные витки. С течением времени витки разбалтываются, и акустический шум трансформатора растет.

Другим неприятным последствием пускового тока является перегорание предохранителя в цепи первичной обмотки.

Величина пускового тока определяется как моментом времени включения (по отношению к начальной фазе сетевого напряжения), так и параметрами трансформатора. В частности, повышение числа витков первичной обмотки снижает пусковой ток, что еще раз говорит в пользу применения трансформаторов с пониженной рабочей индукцией. И наоборот, у трансформатора, работающего близко к насыщению, бросок тока при включении может быть очень большим.

Трансформаторы с пониженной рабочей индукцией. Существует мнение (вполне оправданное), что хорошие результаты дает применение в усилителях трансформаторов с пониженной индукцией, работающих практически на линейном участке кривой намагничивания (конец участка А – начало участка В на рис. 9). Действительно, снижение индукции уменьшает потоки рассеяния, а значит и магнитные поля трансформатора, а также снижает пусковой ток. Это достигается увеличением числа витков в обмотках в 1,2…1,3 раза выше номинального. Уменьшение полей рассеяния снижает индуктивность обмоток, но из-за повышения длины провода, возрастает их активное сопротивление, поэтому просадки напряжения под нагрузкой практически не меняются, а вот нагрев обмоток растет. Для нормализации нагрева увеличивают мощность трансформатора, повышая диаметр проводов обмоток.

Таким образом, чтобы получить трансформатор с пониженной рабочей индукцией, необходимо изготовить трансформатор с мощностью в 1,3…1,5 раз больше требуемой, все обмотки которого рассчитаны на напряжение в 1,2…1,3 раза больше необходимого.

Необходимо отметить, что при этом улучшается только работа самого трансформатора, на усилитель это никак не сказывается (если только магнитные поля трансформатора не действуют на усилитель, но к этому необходимо стремиться в любом случае). Поэтому затраты на такой специальный трансформатор практически никогда не окупаются (кроме техники очень высокого качества, там применение подобного трансформатора не только оправдано, но и зачастую просто необходимо), а в конструкциях начинающих радиолюбителей – наверняка. Поэтому «низкоиндукционный» трансформатор имеет смысл применять, если он уже есть, а если его нет, то и не надо.

Подмагничивание сердечника постоянным током. Трансформатор – устройство, предназначенное для работы на переменном токе (причем только своей, или близкой к ней частоты – если частота тока сильно отличается от номинальной, он может работать хуже или не работать вообще). Постоянный ток он не преобразует, потому что ЭДС в обмотках наводится только изменяющимся магнитным полем, которое получается, если ток переменный. И на постоянный ток не влияет индуктивность обмоток. Поэтому если на трансформатор подать 220 вольт постоянного тока, трансформатор сгорит – активное сопротивление первичной обмотки маленькое, и ток будет огромным.

А что случится, если через обмотку все же протекает постоянный ток? На переменном токе даже очень большие токи обмоток практически не изменяют рабочий магнитный поток, так как влияния первичной и вторичной обмоток взаимно компенсируются. На постоянном токе взаимодействия обмоток и взаимной компенсации токов не происходит. Постоянный ток создаст ничем не компенсируемое магнитное поле, которое будет подмагничивать сердечник, изменяя индукцию в нем. Если это поле достаточно велико, то сердечник начнет насыщаться со всеми вытекающими отсюда последствиями.

Так что появления постоянного тока (заметной величины) в трансформаторе следует избегать. Исключение составляют выходные трансформаторы ламповой техники – в них предусмотрен зазор в сердечнике для исключения насыщения. Но и в таком случае трансформатору работать не очень комфортно.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

О параллельной работе трансформаторов | Теорія

Параллельным включением трансформаторов называют такое их соединение, при котором одноименные выводы обмоток ВН и НН подключают к одноименным проводам (сборным шинам) сети. Параллельная работа (рисунок 1) трансформаторов удобна и экономична. Можно установить один трансформатор большой мощности, которой окажется достаточно для любой возможной нагрузки. Но тогда этот трансформатор придется держать включенным все время, хотя на полную мощность он будет работать только незначительную часть времени. Рисунок 1 — Параллельная работа двух однофазных трансформаторов Мы знаем, что независимо от нагрузки в трансформаторе всегда существуют постоянные потери — потери холостого хода. Как бы ни был нагружен трансформатор, он все равно будет потреблять какую-то мощность, бесполезно расходуемую на потери в магнитопроводе. Потребитель мирился бы с такими потерями при работе трансформатора с полной нагрузкой. Но при частичной нагрузке, когда трансформатор отдает только часть своей мощности, потери холостого хода делают его эксплуатацию экономически невыгодной. Поэтому во многих случаях один трансформатор большой мощности заменяют двумя или несколькими трансформаторами меньшей мощности. Трансформаторы включают параллельно как со стороны ВН, так и со стороны НН, но под напряжением в каждый момент времени находится лишь минимально необходимое число трансформаторов. Если нагрузка возрастает, дополнительно включают новые трансформаторы; когда она снижается, соответствующую часть трансформаторов отключают. Таким образом, число работающих трансформаторов всегда соответствует нагрузке. В большинстве случаев экономия только на потерях в стали окупает за короткий срок дополнительные затраты на установку нескольких трансформаторов вместо одного. Однако не всякие трансформаторы можно включить на параллельную работу. Существует три условия, соблюдение которых совершенно необходимо для включения трансформаторов на параллельную работу. Первое условие заключается в том, что все включаемые параллельно трансформаторы должны иметь одинаковый коэффициент трансформации. Другими словами, первичные и вторичные обмотки должны быть рассчитаны на одинаковые напряжения. Но на практике встречаются случаи, когда у того или иного трансформатора коэффициент трансформации несколько отличается от необходимой величины. Так, вместо того, чтобы иметь коэффициент трансформации, равный, например, k = ω12 = 3000/400, нередко получаем ω12 = 3000/402 или 3000/403 и т. д. Если трансформатор работает один, разница 2 или 3 В при требуемом напряжении 400 В несущественна. Если же этот трансформатор будет работать с другим, коэффициент трансформации которого равен точно 3000/400, могут возникнуть неприятности. Суть их в том, что на одной и той же шине (см. рисунок 1), к которой подключены обмотки НН обоих трансформаторов, не могут быть сразу два разных напряжения: 400 и 402 В. Поэтому разница 2 В должна компенсироваться каким-то падением напряжения, вызванным уравнительным током Iур2, тотчас возникающим между обмотками НН. Согласно известному нам положению этот ток немедленно вызовет соответствующий уравнительный ток Iур1 в обмотках ВН, что повлечет за собой и соответствующее падение напряжения в этих обмотках. Уравнительные токи снижают напряжения и вызывают дополнительные потери энергии, поэтому их присутствие недопустимо. Чтобы не сделать ошибки при параллельном включении трансформаторов, ГОСТ 721—77 стандартизовал напряжения обмоток ВН и НН, а ГОСТ 11677—75 установил, что коэффициенты трансформации не должны отличаться более чем на ±0,5%. Второе условие параллельной работы заключается в том, чтобы все включенные параллельно трансформаторы имели одинаковые напряжения короткого замыкания uк. Можно доказать, что общая нагрузка в таком случае распределяется между трансформаторами пропорционально их номинальным мощностям и обратно пропорционально их напряжениям короткого замыкания: Р = (Р1/uк1 + Р2/uк2) uк, где Р — общая нагрузка; P1 и Р2 — номинальные мощности трансформаторов; uк1 и uк2 — напряжения короткого замыкания трансформаторов: Р1/uк1 uк и Р2/uк2 uк — мощности, которые получаются от первого и второго трансформаторов при их параллельной работе; uк — напряжение короткого замыкания, общее для двух параллельно работающих трансформаторов. Только при равенстве uк всех включаемых параллельно трансформаторов можно добиться равномерного распределения мощностей и избежать перегрузки одних и недогрузки других трансформаторов. Чтобы исключить ошибки при параллельном включении трансформаторов, стандартами установлено для каждого трансформатора определенной мощности и напряжения обмотки ВН определенное значение напряжения короткого замыкания. Так, ГОСТ 12022—76 для трансформаторов мощностью 400 кВА и напряжением 10 кВ установил uк равным 4,5%, а напряжением 35 кВ — 6,5%. ГОСТ 11920—73 для трансформаторов мощностью 2500 кВА и напряжением 10 кВ установил uк равным 5,5%, а напряжением 35 кВ — 6,5%. Однако при практическом исполнении трансформаторов всегда возможны некоторые отступления в размерах обмоток или каналов между ними, что, как известно, влияет на величину uк. Поэтому ГОСТ 11677—75 разрешает включать на параллельную работу трансформаторы с некоторым отступлением от номинальных значений uк (в пределах ±10%). Третье условие параллельной работы заключается в том, чтобы все предназначенные для нее трансформаторы имели одинаковые группы соединения. Другими словами, необходимо при равенстве напряжений ВН иметь еще и одинаковые углы между векторами линейных напряжений обмоток ВН и НН. Чтобы убедиться в необходимости одинаковых групп соединения, рассмотрим простой пример. Пусть два трансформатора имеют схемы и группы соединения Y/Δ — 11 и Y/Δ — 1. На рисунке 2, а, б показаны совмещенные векторы линейных напряжений обмоток ВН и НН первого и второго трансформаторов. Если первичные напряжения (ВН) у них одинаковы, то при параллельном соединении между вторичными напряжениями a1b1 и a2b2 появится сдвиг 60° (рисунок 2, в). Вследствие этого получится геометрическая разность напряжений a1b1 и a2b2, показанная на рисунке отрезком b1b2. Треугольник a1b1b2 равносторонний, поэтому отрезок b1b2 = a2b1 = a2b2, т. е. равен по величине линейному напряжению обмотки НН. а — группа соединения Y/Δ — 11; б — группа соединения Y/Δ — 1; в — векторная схема параллельного соединения трансформаторов с группами соединения 11 и 1 Рисунок 2 — Определение напряжения между обмотками НН параллельно работающих трансформаторов с разными группами соединений Итак, между обмотками НН параллельно работающих трансформаторов появляется напряжение, равное линейному напряжению НН, а следовательно, появляются уравнительные токи в обеих обмотках (ВН и НН). Таким образом, мы видим, что включение на параллельную работу трансформаторов с различными группами соединений недопустимо.

Можно ли у двух одинаковых трансформатов вторичные обмотки соединить параллельно для увеличения мощности ?

Можно ли у двух одинаковых трансформатов вторичные обмотки соединить параллельно для увеличения мощности ?

 

Почему бы и нет? Главное -вольтаж на вторичках должен совпадать.
Чем точнее, тем лучше.Иначе — один из них будет источником питания
для другого . Т.е. будут греться.

 

Интересный вопрос… А как по-вашему, что Вы делаете, когда мотаете обмотку в два провода? Или литцендратом?

 

После выпрямителей можно параллелить и с не очень точно совпадающим напряжением.

 

Использую подобное включение часто. Но для увеличения мощности надо ещё и первичные запараллелить (они, ведь, тоже одинаковые), или последовательно соединить.
Мне приходится «мудрить» подобным образом с высоковольтными трансформаторами (строчниками). Для увеличения мощности я выходные обмотки включаю последовательно, чтобы сделать двухполупериодное выпрямление, как в трансе со средней точкой. Но соединить в строчниках начало одной обмотки с концом другой нельзя (пробьёт обмотку одного из трансовна сердечник). Поэтому соединяю между собой «холодные» концы, которые дают среднюю точку, а высоковольтные идут на свои однополупериодные выпрямители (умножители). Противофазность высоковольтных обмоток обеспечиваю противовазным соединением первичных обмоток, когда последовательно (предпочтительнее), когда параллельно.

 

ВиНи если я вас правильно понял, то вы соеденяете последовательно как первичную, так и вторичную обмотки.
В моем случае силовые трансформаторы 220 > 12.

 

Не знаю, уловили ли вы нюанс с последовательным соединением обмоток в моём случае, но из двух вариантов ответов на ваш вопрос я могу ответить ДА.
В вашем случае следует соединить параллельно (не забывая о правильной фазировке) и первичные (220 В) и вторичные (12 В) обмотки. Если выходное напряжение надо увеличить (удвоить), то вторичные обмотки соедините последовательно.

 

HardMaster: Можно ли у двух одинаковых трансформатов вторичные обмотки соединить параллельно для увеличения мощности ?
Лучше не надо. Ярким примером вам будет параллельное соединение двух батареек. Вы где-нибудь видели такое соединение?

И объясните, что вы имеете в виду под увеличением мощности? Мощность, отдаваемая трансформатором, в основном определяется конструкцией сердечника, а не числов вторичных обмоток и количеством витков в них. Конкретный трансформатор не даст вам больше мощности с нескольких обмоток, чем с одной.

 

GM: И объясните, что вы имеете в виду под увеличением мощности?
GM: Конкретный трансформатор не даст вам больше мощности с нескольких обмоток, чем с одной.
Параллельное соединение обмоток улучшит нагрузочную способность вторички, за счет уменьшения падения напряжения на сопротивлении провода. По этому, при параллельном соединении обмоток, за счет поднятия напряжения (под нагрузкой), реальный блок питания со стабилизатором будет способен стабилизировать напряжение при большем токе нагрузки, а значит, можно говорить, что увеличится мощность блока питания.

 

Спец: что Вы делаете, когда мотаете обмотку в два провода?

Эти два провода на одном железе, в одном магнитном потоке. Двух одинаковых трансов не найдется даже с конвейера…
Нормально и даже приоритетно — небольшие, локальные БП поближе к потребителю.

 

Параллельное включение сварочных трансформаторов — Энциклопедия по машиностроению XXL

Принципиальная схема параллельного включения сварочных трансформаторов дана на фиг. 40.  [c.290]
На фиг. 39 представлена схема параллельного включения сварочных трансформаторов типа СТН-500 (СТН-700), а на фиг. 40 — схема включения сварочных трансформаторов марки СТ-АН-1. При этом необходимо, чтобы перемычки вторичных обмоток на клеммных досках трансформаторов были включены на одноименные клеммы.  [c.105]

Параллельная работа сварочных трансформаторов. При параллельном включении сварочных трансформаторов необходимо соблюдение следующих условий.  [c.241]

НИИ заданного уровня с блока обратной связи поступает команда на силовой триггер, происходит переброс триггера и сварочный ток выключается. Регулирование скорости нарастания тока осуществляется регулированием угла зажигания силового триггера, а также изменением величины параллельно включенного сварочного трансформатора емкости.  [c.153]

При параллельном включении сварочных трансформаторов необходимо  [c.305]

ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ СВАРОЧНЫХ ТРАНСФОРМАТОРОВ  [c.102]

Параллельное включение сварочных трансформаторов  [c.303]

При параллельном включении сварочных трансформаторов необходимо соединить одноименные концы первичных и вторичных обмоток. Эти концы на клеммных досках трансформаторов обозначают одинаковыми буквами.  [c.304]

На фиг. 38,а представлена схема включения сварочных трансформаторов одинаковой мощности с отдельными дроссельными катушками на параллельную работу. Клеммы вторичных обмоток и дроссельные катушки включаются между собой параллельно. Регулировка тока  [c.105]

Со стороны вторичных обмоток необходимо соединить клеммы, имеющие в каждый момент времени одинаковую полярность (клеммы а — а и Ь — Ь, фпг 47). Одна пара клемм, например Ь, соединяется только при замыкании рубильника ГР, к которому подключается сварочный пост. При разомкнутом рубильнике ГР можно включать Первичные обмотки трансформаторов в сеть раздельно и производить предварительную настройку режима каждого трансформатора. После этого замыкают рубильник ГР, включая тем самым трансформаторы на параллельную работу. На фиг. 47 изображена схема параллельного включения двухкорпусных трансформаторов с отдельными дросселями Др. У однокорпусных трансформаторов клеммы а непосредственно соединяются между собой.  [c.211]
Трансформаторы с отдельным дросселем (регулятором). Отечественной промышленностью серийно выпускались трансформаторы указанной конструкции типа СТЭ (сварочный трансформатор завода Электрик ). Эти трансформаторы снабжены отдельным регулятором сварочного тока типа РСТЭ. Из трансформаторов типа СТЭ незначительное применение при автоматической сварке имеет трансформатор СТЭ-34 с дросселем РСТЭ-34. Этот трансформатор имеет пределы регулирования силы тока от 100 до 700 а. В случае необходимости производить сварку на токах, превышающих номинальный ток одного трансформатора, прибегают к параллельному включению двух трансформаторов.  [c.61]

Необходимость включения сварочных трансформаторов на параллельную работу возникает при питании постов автоматической сварки маломощными трансформаторами или при ручной сварке электродами большого диаметра (более 7 мм). В этом случае производят парал-  [c.59]

Важнейшими условиями параллельной работы сварочных трансформаторов (рис. I) являются одинаковые значения следующих параметров высшего (первичное) и низшего (вторичное) напряжения, напряжения холостого хода, напряжения короткого замыкания, груп-. пы соединения обмоток, полярности включения обмоток.  [c.8]

При недостаточной мощности трансформаторов повышение мощности сварочной установки достигается параллельным включением двух или нескольких трансформаторов  [c. 465]

В оборудовании контактной сварки находят широкое применение источники тока с частотой, существенно меньшей промышленной частоты. В целом ряде случаев это позволяет получить наиболее благоприятные энергетические и технологические характеристики оборудования. Источник питания (рис. 1.2, б) представляет собой два трехфазных мостовых тиристорных выпрямителя ВИ, соединенных на выходе встречно параллельно и питающих поочередно первичную обмотку однофазного сварочного трансформатора ТС. При включении любого выпрямителя на первичную обмотку трансформатора подается напряжение соответствующей полярности. У низкочастотных машин длительность включения тока ог-  [c.169]

ПАРАЛЛЕЛЬНОЕ ВКЛЮЧЕНИЕ ОДНОФАЗНЫХ СВАРОЧНЫХ ТРАНСФОРМАТОРОВ  [c.152]

Наиболее употребительные составы покрытий приведены в табл. 103. Сварку ведут постоянным или переменны.м током 60—100 а на 1 мм диаметра электрода. В качестве источников тока применяют сварочные трансформаторы ТСД-ЮОО, ТСД-2000 или два трансформатора ТС-500, включенные параллельно генераторы постоянного тока ПС-500 и ПСМ-1000, сварочные выпрямители ВСС-500, ИПП-500 и ИПП-1000.[c.322]

При параллельном включении двух сварочных трансформаторов на один пост они должны быть включены со стороны питающей сети в одну и ту же фазу (рис. 45).  [c.76]

Горячая сварка чугуна требует максимальных сварочных токов (/ в = = 60 100 а на 1 л.и диаметра электрода). Род тока безразличен. Требуются источники тока, обеспечивающие нужную мощность дуги. Обычно рекомендуются сварочные трансформаторы ТС-1000 ТС-2000 плп два типа ТС-500, включенных на параллельную работу генераторы постоянного тока НС-500 и нем-1000 сварочные выпрямители ВСС-500, ИПП-500 и ППП-1000.  [c.288]

Пистолет комплектуется шкафом управления, источником питания дуги, сварочными проводами, проводами управления, набором сменных и запасных деталей. Питание дуги переменным током, при сварке шпилек диаметром до 12 мм, осуществляется от сварочного трансформатора типа ТСД-1000-3. Для приварки шпилек диаметром свыше 12 мм от пятого и седьмого витков обмотки дросселя трансформатора ТСД-1000-3 необходимо сделать отпайки и вывести на доску зажимов. Включение пяти витков обеспечивает сварочный ток до 2000 а. Для питания сварочной дуги постоянным током можно пользоваться преобразователем типа ПСМ-1000 с балластным реостатом или двумя преобразователями типа ПС-500, соединенными на параллельную работу.  [c.342]

Система питания сжатым воздухом верхнего и нижнего пневматических цилиндров состоит из трех двухходовых электромагнитных пневматических клапанов с лубрикаторами, двух дросселирующих клапанов и двух кранов. Сварочный трансформатор мощностью 0д ква смонтирован в корпусе машины. Вторичный виток трансформатора состоит из параллельных медных дисков с трубками для водяного охлаждения диски впаяны в медные колодки, которые соединяются гибкими шинами с медными плитами нижних электродов. Регулирование вторичного напряжения трансформатора осуществляется переключателем ступеней, который дает возможность получать восемь значений вторичного напряжения в пределах от 3 до 6 в. Включение и выключение трансформатора производятся игнитронным контактором типа КИА-50-3, смонтированным внизу корпуса машины.[c.259]

Параллельно выходу выпрямителя включен игнитрон И7, замыкающий первичную обмотку сварочного трансформатора СТ при выключении выпрямителя, чем обеспечивается предотвращение колебания энергии между трехфазной сетью и сварочным трансформатором.  [c.207]

В случае необходимости производить сварку током, превышающим номинальный ток одного источника питания, применяется параллельное включение двух и более сварочных трансформаторов или генераторов с соблюдением следующих основных правил.  [c.210]

Источник питания содержит трехфазный понижающий трансформатор Гр, трехфазный дроссель насыщения Дн и. выпрямительный блок ВС, собранный по трехфазной мостовой схеме. В цепи дуги имеется полупроводниковый регулятор сварочного тока, собранный из десяти параллельно включенных германиевых триодов типа П4 по схеме с общим эмиттером. Дуга возбуждается с помощью осциллятора последовательного включения. Падающая характеристика источника питания получается за счет дросселя насыщения Дн, который имеет две обмотки управления одну включенную последовательно, а другую параллельно выходу выпрямительного блока ВС. Сопротивлениями и подбирается нужная форма внешней характеристики.  [c.74]

При параллельном включении первичные обмотки сварочных трансформаторов СТ подключают обязательно к одинаковым линейным проводам трехфазной питающей сети, с тем чтобы фазы э. д. с. во вторичных обмотках совпадали (рис. 54). С вторичной стороны попарно соединяют клеммы, имеющие в каждый данный момент времени одинаковую полярность (клеммы а—а и Ь—Ь).  [c.79]

Основные правила параллельного включения трансформаторов (фиг. 44) заключаются в следующем. На параллельную работу могут быть включены только однотипные трансформаторы. Первичные обмотки сварочных трансформаторов подключаются к одинаковым линейным проводам трехфазной сети с тем, чтобы напряжения вторичных обмоток трансформаторов совпадали по фазам. Клеммы вторичных обмоток трансформаторов, соединяемые попарно, должны иметь в один и тот же момент времени одинаковую полярность. Индуктивное сопротивление дросселей должно быть установлено одинаковым.[c.61]

А, В, С — фазы сети переменного тока, T , — сварочные трансформаторы, Др,, ДР2 — дроссели, Р рубильник, в,. 1а, — номинальные токи для каждого трансформатора, /щ, — номинальный ток при параллельном включении, 1/ — номинальное напряжение при параллельном включении  [c.136]

КОМ дана на рис. 76. Для получения повышенного напряжения холостого хода катушки вторичной обмотки нормального сварочного трансформатора можно перевести с параллельного включения на последовательное.  [c.201]

На фиг. 85 показана схема включения на параллельную работу сварочных трансформаторов типа СТЭ с отдельными дросселями. Как видно из схемы, од а пара клемм вторичных обмоток транс-формаюров соединяется только при ьамыкаяии рубильника. При  [c.242]

В Институте электросварки им. Е О. Патона АН УССР найден оригинальный принцип построения многоэлектродных машин (фиг. 74). Он отличается отсутствием всяких коммутационных устройств и изоляции между электродами. Последовательное включение электродов достигается автоматически. Группа электродов 1 подключается к общему проводу сварочного трансформатора 2, параллельно которому подключен осциллятор 3. Между электродами и изделием имьется зазор. При включении сварочного трансформатора и осциллятора дуга возбуждается там. где наименьший зазор.  [c.276]

Равенство мощностей трансфор.маторсв желательно, но не обязательно. Если. мощность включаемых на параллельную работу сварочных трансформаторов не одинакова, то они включаются по схеме рис. 24 б (изображены только вторичные обмотки). В этом случае во вторичную обмотку каждого трансформатора включают амперметр Одни клеммы вторичньо йб /П1ок включают параллельно до общего руби.пьника, другие — через общий рубильник Р4. В случае включения на параллельную работу трансформаторов  [c.39]

Для повышения os ф сварочного трансформатора типа ТСК параллельно первичной обмотке включен конденсатор типа ИМ 0,40-9-1 емкостью 190 мкф на рабочее напряжение 400 в. Среднее значение коэффициента мощности при напряжении сети 380 в повышается у ТСК-300 до значенпя 0,93 (у ТС-300 созф = = 0,51), а у ТСК-500 до 0,788 (у ТС-500 os ф =0,53).  [c.47]

Сп.чхронный игнитронный прерыватель для точечной сварки состоит из двух игнитронных ла.мп, включенных встречно-параллельно между собой и последовательно с первичной обмоткой сварочного трансформатора.  [c.331]


Трансформаторы тока — описание, принципы работы, схемы

В числе задач, которые решает электротехника – проведение профессиональных измерений при больших значениях величин. В качестве вспомогательного оборудования при проведении «исследований» выступает трансформатор тока. Основными элементами прибора выступают его обмотки. Для производства «измерений» осуществляется последовательное подключение первичной обмотки к сети переменного (исследуемого) тока. При этом вторичный контур прибора замыкается на контрольно-измерительную аппаратуру. В числе ведущих характеристик трансформатора высокая точность, которая достигается постоянным пропорциональным соотношением значений тока между обмотками. В целях исследований могут применяться прибора с большим количеством обмоток.

Главным отличием прибора для измерения токов от аналогичных устройств мощности или напряжения является использование нескольких витков. Первичная обмотка изготавливается в виде катушки или плоского, установленных на сердечник. Есть и другие варианты исполнения, например, в виде шины, расположенной на центральном отверстии. В нашем случае применяются трансформаторы тока Т-0,66 и ТШП.

Особенности вспомогательных приборов

Компоновка первичной обмотки трансформатора обычно не имеет более одного витка. Такое расположение позволяет подключать прибор в последовательную цепь. Вторичная же обмотка выполняется с большим количеством витков, посаженных на многослойный сердечник, что обеспечивает низкую плотность магнитного поля. В этой части трансформатора будет происходить короткое замыкание (при подаче на амперметр), либо ток будет подаваться на резистивную нагрузку. Во втором случае происходит эффект насыщения сердечника с одновременным пробоем напряжения до отказа.

Вне зависимости от подаваемого на первичную обмотку тока, значение на вторичном контуре будет равняться 1 или 5 Ампер. В отличие от последовательного прибора, на трансформаторе напряжения зависимость входящего и выходного значений сохраняется.

Типы вспомогательных приборов, используемых в промышленных целях:

  1. Обмоточный трансформатор. Первичная обмотка устройства имеет постоянное последовательное соединение с проводником. На этом участке цепи протекает замеренный ток. Вторичная обмотка выдает электрическую величину, значение которой будет зависеть от количества витков.
  2. Тороидальный трансформатор. Такие устройства не имеют первичной обмотки. Для изготовления приборов используется рулонная сталь. Ток проходит через специальное окно практически без потерь, при этом наблюдается высокая индукция насыщения. Сам сердечник может быть выполнен в раздельном виде, что позволяет отключать его без разрыва цепи. В числе преимуществ тороидального трансформатора меньшие вес, объем и уровень шума, экономия энергии и простой монтаж. Среди недостатков отмечаются более высокая стоимость, отсутствие магнитного зазора и повышенная чувствительность к сетевому напряжению.
  3. Стержневой трансформатор. В качестве первичной обмотки используется подключаемый кабель или шина основной цепи. Элементы фиксируются на жесткой сцепке, подключаются только при выполнении измерений.

Сухой силовой трансформатор обеспечивает снижение больших значений тока до нормативных 1 или 5 Ампер. При таких условиях может работать контрольно-измерительная аппаратура или управляющая автоматика. Таким образом проявляется защитная функция приборов, в паре с которыми могут подключаться к высоковольтным линиям передач защитные реле, магнитные выключатели, измерители мощности или МСВ (модульные автоматические расцепители). Также устройства используются при оборудовании комплектных трансформаторных подстанций (КТП).

Конструктивные особенности

На практике трансформаторы тока не используются в качестве одиночной компоненты. Включаются в цепь как вспомогательные приборы. Примером такой связки служит согласованная пара трансформатора и амперметра. При этом под различные типы контрольно-измерительной аппаратуры подбирается подходящий тип устройства. В случае с трансформатором осуществляется калибровка на предмет установления пропорциональной зависимости между первичной и вторичной обмотками.

В технических характеристиках вспомогательных приборов чаще можно найти стандартное значение вторичной мощности 5 А. Соотношение на первичной и вторичной обмотках при этом устанавливается как 100/5. Расшифровка пропорции означает, что входящий ток больше выходного в 20 раз. Для соотношения 500/5 будет применяться соответственно стократное превышение на первичной обмотке.


Учитывая стандартные параметры трансформаторов и их возможности, появляется возможность регулирования значений выходного тока за счет увеличения количества вторичных обмоток. В этом случае используется обратная пропорциональность между количеством витков между двумя контурами устройства. Исходя из этого подтверждаются два уравнения электрической цепи:

  1. Соотношение витков T.R.=N=Np/Ns=Is/Ip.
  2. Для вычисления выходного тока (на вторичной обмотке) Is=Ip*Np/Ns.

Коэффициент тока как параметр трансформатора устанавливает соотношение для витков в обмотках. Если в первичном контуре может быть один или несколько оборотов проводника, то на втором их число может достигать нескольких сотен. При этом соотношения 100/5 и 20/1 не определяют аналогичные трансформаторы, поскольку входные токи будут разные. Что касается преобразования трансформаторов, это можно сделать за счет изменения проходов на входной обмотке. Так, для преобразования прибора 300/5А в меньший достаточно поменять (увеличить) число витков на первичном контуре. Наращивание числа витков позволит получить трансформатор с максимальными выходными параметрами.


Примеры расчетов

Назначением трансформатора стержневого типа с количеством витков 1 и 160 на первичной и вторичной обмотках соответственно будет использование в паре с амперметром 0.2 Ом. Измерительный прибор рассчитан на максимальный входной ток в 800 А. Для расчета выходных параметров будет использоваться формула:

Is=Ip*Np/Ns=800/160=5 A.

Напряжение на амперметре рассчитается следующим образом: vs=Is*Ra=5*0.2=1 V

Формула показывает, что при использовании силового трансформатора тока в паре с амперметром малого сопротивления падение напряжения будет незначительным. При условиях подачи максимального тока составит 1 В.

При удалении из связки измерительного прибора произойдёт размыкание вторичной обмотки. При таком условии трансформатор станет повышающим, поскольку на выходном сердечнике будет наблюдаться значительное увеличение намагничивающего потока. Для расчета возрастающего напряжения используется формула Vp*Ns/Np. К примеру, если трансформатор включен в цепь линии электропередач с расчетным напряжением 480 В, то на выходе значение будет 76.8 кВ. Указанное значение получится по формуле Vp*Ns/Np=480 В*160 витков первичной обмотки/1 проход первичного контура.


Исходя из этого использование трансформатора без нагрузки не допускается. Аналогично вспомогательные приборы для напряжения не могут включаться без короткого замыкания. Для того чтобы исключить поражение электрическим током, перед удалением измерительной аппаратуры следует закоротить вторичный контур.

Возвращаясь к расчетной формуле, растущее напряжение является только показателем высокого насыщения. Отсутствие сдерживающих факторов может привести к повреждению изоляционного слоя проводника и пробою цепи. В этом случае на выходе трансформатора возрастает риск поражения электрическим током.

Дополнительная классификация устройств

Промышленное назначение трансформаторов задается не только конструкцией первичной обмотки. Включение в цепь осуществляется по таким параметрам рабочих условий, принципу работы или типу установки:

  • Назначение приборов. Промежуточные, защитные или измерительные трансформаторы используются в паре с соответствующими устройствами. Назначение задает схему подключения, в том числе для проведения лабораторных испытаний, где важны коэффициенты трансформации;
  • Тип установки. Трансформаторы могут быть встраиваемыми, накладными или переносными. Тип установки внутренний или наружный учитывается при включении устройств в схему промышленного оборудования или специальных аппаратов. При монтаже также учитываются опорные или проходные способы;
  • При активной эксплуатации трансформаторов имеет значение тип изоляции. В технических характеристиках приборов встречаются описания конденсаторных, сухих, фарфоровых или бакелитных исполнений. Самый надежных вид изоляции – заливка компаундом;
  • Количество ступеней трансформации. Этот параметр определяет возможности приборов по корректировке значений входного тока. Существуют одноступенчатые или каскадных устройства.
Технические характеристики трансформаторов тока, определяющие практическое применение

Поскольку вспомогательные приборы используются в промышленных условиях, выбор устройств должен осуществляться профессионально, по ряду параметров. В их числе следующие:

  1. Номинальный ток. Это не максимальное значение цепи, а параметр, при котором будет сохраняться отказоустойчивость трансформатора. Запас перегрева обычно находится на уровне 20% от номинального тока.
  2. Коэффициент трансформации. Отличается от установленного значения номинального тока. Определяет соотношение между токами на входной (первичной) и выходной (вторичной) обмотках.
  3. Номинальное напряжение. Аналогично нормативному значению для тока задает нормальные для прибора условия работы. Номинальное напряжение определяет качество изоляции, способность к отказоустойчивости в режиме перегрузок.
  4. Токовая погрешность. Явление, возникающее под действием намагничивающего тока. Обозначает разницу между параметрами входного и выходного токов. Возрастает при увеличении намагничивания сердечника в трансформаторе.
  5. Нагрузка номинальная. Под этим параметром понимается значение в Ом, определяющее нормативные условия работы устройства. Нормированными остаются значение входного тока и класс точности.
  6. Номинальная предельная кратность. Соотношение тока первичного к току номинальному.
  7. Максимальное значение кратности для вторичного контура. Соотношение токов на выходной обмотке к номинальному току задает предельный уровень насыщения магнитопровода.

Трансформаторы тока остаются популярными приборами с широким спектром применения в электроэнергетике. Используются для измерений, защиты или в качестве промежуточных устройств корректировки цепи. Самый высокий класс точности применяется в лабораторных условиях.

Основы трансформаторов. (часть 4)

Сегодня доступно множество конфигураций трансформаторов, каждая из которых применима к определенной ситуации или конструктивным требованиям. Давайте обсудим одну из основных конфигураций и способы ее использования.

Многообмоточные трансформаторы

Во многих случаях решением проблемы с несколькими линейными напряжениями является многообмоточный трансформатор. Одним из примеров является трансформатор, показанный на рис. 1. Здесь у нас есть две первичные обмотки, каждая из которых рассчитана на 240 В.Буквы «S» и «F» на схеме обозначают начало и конец обмоток. Предположим, что каждый из них способен выдерживать 5 кВА. Тогда этот трансформатор будет рассчитан на 10 кВА и сможет выдерживать нагрузку 10 кВА, если обе первичные обмотки будут полностью использованы. В зависимости от того, как эти первичные обмотки подключены, этот трансформатор может использоваться с первичной обмоткой 240 В или 480 В. Посмотрим как.

Соединение серии

. На рис. 2 мы видим, что две обмотки трансформатора на 240 В теперь соединены последовательно.Если мы соединим «конец» одной первичной обмотки с «началом» другой первичной обмотки, довольно очевидно, что мы получим одну непрерывную обмотку. И, поскольку каждая обмотка имеет достаточно витков на 240 В, тогда комбинация обеих обмоток, включенных последовательно, имеет достаточно витков на 480 В. Таким образом, ток в обеих обмотках будет одинаковым, поскольку они включены последовательно; таким образом, обе обмотки вносят свою полную мощность в кВА, а общая первичная обмотка может выдерживать 10 кВА.

Соотношение напряжений для каждой первичной обмотки, как показано на рис.1, это 240 В первичная: 120 В вторичная или 2: 1. Когда мы соединяем обе первичные обмотки последовательно, мы удваиваем количество витков (и напряжение). Таким образом, соотношение напряжений в конфигурации, показанной на рис. 2, составляет 480 В первичной обмотки: 120 В вторичной, или 4: 1. В то время как первичная обмотка теперь составляет 480 В, вторичная остается 120 В, а трансформатор по-прежнему способен выдерживать номинальную нагрузку 10 кВА.

Параллельное или множественное подключение. Если мы хотим сделать наш трансформатор, показанный на рис.1, подходящим для линии 240 В, при этом сохраняя выходное напряжение 120 В для нашей номинальной нагрузки 10 кВА, мы можем подключить первичные обмотки параллельно, как показано на рис.3. Обратите внимание, что два основных «начала» соединены вместе, как и два «конца». Это имеет тот же эффект, что и намотка только одной обмотки на 240 В, но с двойным проводом (или проводом, имеющим площадь в два раза больше круглого мил). При параллельном подключении двух обмоток каждая обмотка может работать при своем номинальном напряжении и выдерживать свой номинальный ток. Таким образом, первичная обмотка может выдерживать нагрузку 10 кВА, на которую рассчитан трансформатор.

Процент отводов

Эти последовательные / параллельные соединения позволяют нашему трансформатору работать с номинальной мощностью кВА при любом входном напряжении и одинаковом вторичном напряжении.В качестве дополнительной функции можно добавить ответвители к первичной обмотке, чтобы повысить универсальность применения трансформатора. Однако как первичная, так и вторичная обмотки должны иметь одинаковый ответвление.

Процент отводов изменяется при последовательном и параллельном подключении. Например, 5% ответвление при 240 В соответствует 12 В. при параллельном подключении. При последовательном соединении это же 12 В составляет всего 2 1/2% от 480 В. Таким образом, трансформатор с последовательным подключением 480 В может иметь два ответвления 2 1/2% выше нормы и четыре ответвления 2 1/2% ниже нормы.Однако тот же трансформатор, теперь с параллельным подключением 240 В, будет иметь только одно отводы на 5% выше нормы и два отвода на 5% ниже нормы.

Выбор оптимальной конфигурации

Поскольку существует множество конфигураций трансформатора, при выборе следует руководствоваться экономическими соображениями, а также целесообразностью. Оценка количества выводов, которые необходимо подключить, и мощности отдельных обмоток в кВА должны указать вам правильное направление и привести к наилучшему выбору.

Подключение первичной обмотки двух понижающих трансформаторов последовательно

Вы действительно хотите сказать, что у вас есть источник питания 220 В, который периодически дает 440 В? Как что-нибудь электрическое выживает в вашем районе?

Вы не можете последовательно соединить две первичные обмотки на разных ядрах, если не распараллелите вторичные.Давайте подумаем, почему:

смоделировать эту схему — Схема создана с помощью CircuitLab

Рис. 1. (a) Из-за различных вторичных токов импедансы первичной обмотки не совпадают. (b) и (c) будут работать, потому что вторичные токи будут одинаковыми, поэтому первичные импедансы и токи будут одинаковыми.

  • Первичный ток трансформатора будет зависеть от вторичного тока (который зависит от нагрузки). \ $ \ frac {N_P} {N_S} = \ frac {I_S} {I_P} \ $, где N — количество витков, P — первичный, S — вторичный, а I — текущий.
  • При отсутствии вторичного тока импеданс трансформатора (сопротивление переменному току, если хотите) довольно велик — в противном случае протекал бы большой ток.
  • На трансформаторе с вторичным током полное сопротивление первичной обмотки будет ниже.
  • Теперь должно быть ясно, что у вас больше нет половины напряжения питания на каждой первичной обмотке.Тот, который загружен, будет иметь гораздо более низкое напряжение.

Последовательное или параллельное соединение вторичных обмоток гарантирует, что обе вторичные обмотки будут пропускать одинаковый ток, а полное сопротивление первичной обмотки будет совпадать.


Это дает вам достаточно теории, чтобы понять, почему предложенное вами решение неэффективно. Вам необходимо отремонтировать входящий блок питания.


Импеданс

Не совсем понимаю, как должно измениться сопротивление трансформатора?

Учитывая, что \ $ Z_P = N ^ 2 Z_S \ $, где \ $ N \ $ — коэффициент поворотов, мы можем видеть, что если второй день — это разомкнутая цепь, то Z равно бесконечности с обеих сторон трансформатора.

Я думаю, что соединение, показанное на рис. 1a, будет индуцировать бесконечное напряжение на вторичной обмотке, как в случае с трансформаторами тока.

Было бы , если бы можно было пропустить ток через первичную обмотку. Однако вы не можете. У вас есть только сетевое напряжение и бесконечное сопротивление. Первичная цепь XFMR2 будет иметь разомкнутую цепь для источника переменного тока. Никакого тока не будет. Полное сетевое напряжение будет на первичной обмотке XFMR1, а на вторичной обмотке XFMR1 будет напряжение в \ $ \ frac {1} {N} \ $ раз больше.

Помните, что мы имеем дело с идеальными трансформаторами для этого обсуждения. Реальные будут иметь некоторые потери и утечки, поэтому импеданс не будет бесконечным.

Трансформаторы параллельной работы — Руководство для электрика по однофазным трансформаторам

Может наступить время, когда ваш трансформатор приблизится к полной нагрузке. На данный момент у вас есть два варианта.

  1. Замените трансформатор на более мощный.

  2. Параллель в новом трансформаторе.

Иногда практичнее подключить новый трансформатор параллельно, так как время простоя минимально.

Три правила и правда (для параллелизма)

Перед параллельным подключением трансформаторов необходимо выполнить три условия.

1. Трансформаторы должны иметь одинаковое номинальное первичное и вторичное напряжение.

Если номинальные напряжения трансформаторов не совпадают, большие циркулирующие токи будут течь как в первичной, так и во вторичной обмотке.Циркуляционные токи — это токи, которые протекают между двумя трансформаторами, но не через нагрузки. Меньший трансформатор будет действовать как нагрузка на больший трансформатор. Из-за низкого сопротивления обмотки трансформатора циркулирующие токи могут оказаться довольно большими и опасными.

Даже несмотря на то, что во вторичных обмотках трансформаторов наведены напряжения переменного тока, одинаковые циркулирующие токи протекают во вторичных обмотках. Любой ток, протекающий во вторичной обмотке трансформатора, должен согласовываться с током в первичной обмотке, чтобы в первичных обмотках создавалась надлежащая CEMF.Ток в первичной обмотке равен вторичному току, деленному на отношение витков. Это означает, что циркулирующие токи, пропорциональные токам во вторичных обмотках, также будут протекать в первичных обмотках.

2. При подключении необходимо соблюдать полярность клемм трансформаторов.

Это по-прежнему позволяет вам соединять трансформатор с вычитающей полярностью параллельно с трансформатором с аддитивной полярностью, если вы гарантируете, что соединительные клеммы имеют одинаковую мгновенную полярность.

Рисунок 10. Циркуляционные токи
  • Можно заменить вторичные обмотки трансформатора батареями, чтобы проанализировать, что произойдет, если не соблюдать правильную полярность. На рисунке 11 показаны две батареи с одинаковым напряжением, подключенные неправильно , параллельно. Батареи действуют так, как будто они соединены последовательно друг с другом, и только сопротивление самих обмоток ограничивает ток.

  • Этот ток будет довольно большим и, скорее всего, превысит номинальные значения обмоток и приведет к сгоранию трансформатора.

Опять же, любой ток, протекающий во вторичной обмотке трансформатора, должен согласовываться с током в первичной обмотке, чтобы в первичных обмотках создавалась надлежащая CEMF. Ток в первичной обмотке равен вторичному току, деленному на отношение витков.

Вы должны убедиться, что мгновенные полярности всех соединенных вместе клемм всегда одинаковы.

3. Все трансформаторы должны иметь одинаковый импеданс в процентах.

Это то, о чем мы поговорим позже. Использование одинакового процентного импеданса важно для обеспечения распределения нагрузки трансформаторами в соответствии со своими возможностями. Например, при одинаковом процентном сопротивлении трансформаторы 100 кВА и 25 кВА могут быть соединены параллельно, так что трансформатор 100 кВА всегда несет в четыре раза большую нагрузку, чем трансформатор 25 кВА.

Когда трансформатор нагружен, его напряжение на клеммах изменяется из-за падения IZ (линейных потерь) в обмотках.Процентное сопротивление — это просто выражение полного сопротивления трансформатора в процентах от номинального полного сопротивления нагрузки трансформатора при полной нагрузке. Если трансформаторы имеют одинаковые процентные импедансы, то их напряжения на клеммах равны, если трансформаторы несут равный процент от их токов полной нагрузки. Это гарантирует, что трансформаторы распределяют нагрузку в соответствии со своими индивидуальными возможностями.

Рассмотрим трансформаторы 100 кВА и 25 кВА, упомянутые ранее. Если эти два трансформатора имеют одинаковый процент импеданса, то вместе они могут обеспечивать нагрузку 125 кВА без превышения номинальных значений любого трансформатора.

Однако, если два трансформатора имеют разные процентные сопротивления, трансформатор с меньшим процентным сопротивлением будет перегружен, прежде чем они достигнут 125 кВА.

Рисунок 11. Полярность линии

Соблюдение полярности при параллельном подключении трансформаторов

Возможно параллельное соединение трансформаторов разной полярности. Вы должны помнить, что вы подбираете полярности. Ранее мы узнали, что h2 и X1 всегда имеют одинаковую полярность, поэтому важно уделять очень пристальное внимание полярности трансформаторов.

При разработке чертежей трансформатора необходимо соблюдать последовательность:

  1. Вы определяете полярность питающей линии.
  2. Полярность питающей линии определяет первичную полярность трансформатора.
  3. Первичная полярность определяет вторичную полярность трансформатора.
  4. При подключении убедитесь, что отрицательные стороны соединены вместе, а положительные — соединены вместе.

Видео оповещение!

На видео ниже показано, как правильно соединить параллельные обмотки.

Испытательное напряжение замыкания
  • Этот тест определяет, соблюдена ли правильная полярность.

  • Снова используйте обмотки в качестве батарей, чтобы определить мгновенную полярность. Начните с одной стороны вольтметра и продолжайте движение к другой стороне.

Рис. 12. Проверка замыкания переменного тока
  • Если соблюдена правильная полярность, то вольтметр должен показывать ноль вольт.
  • Если цепь неправильно подключена, вы увидите, что два напряжения суммируются. Это вызовет большие циркулирующие токи и каблазальфлам!

На рисунке 12 две батареи подключены параллельно с соблюдением полярности , и с вольтметром, установленным вместо последнего подключения. Напряжение включения, измеренное вольтметром, должно составлять ноль вольт.

Если вы проследите за схемой, вы увидите, что при правильном подключении батарей они расположены последовательно друг напротив друга. (То есть два напряжения противоположны друг другу.)

На рисунке 6 две батареи подключены параллельно с неправильной полярностью и с вольтметром, установленным вместо последнего подключения, как и раньше. Теперь он измеряет напряжение включения, равное удвоенному напряжению батареи. Если вы проследите за схемой, вы увидите, что при неправильном подключении батарей они включены последовательно, что помогает. (То есть два напряжения складываются вместе.)

Рис. 13. Тест на замыкание переменного тока хорош.

На рис. 13 показан вольтметр, используемый для проверки напряжения замыкания на двух параллельно включенных трансформаторах.Мгновенная полярность первичной шины изображена как две батареи, чтобы мы могли лучше визуализировать взаимосвязь между двумя обмотками. Начав с одной стороны счетчика и перейдя к другой стороне, мы можем рассчитать, что счетчик будет показывать ноль вольт и безопасен для подключения.

Рисунок 14. Тест на замыкание переменного тока каблазалфлам.

На рисунке 14 показан вольтметр, используемый для проверки напряжения замыкания на двух трансформаторах, которые неправильно подключены параллельно . Вольтметр теперь показывает удвоенное вторичное напряжение.В этом случае не снимайте вольтметр , а не и выполняйте окончательные подключения, иначе вы можете столкнуться с каблазалфламом. Вместо этого вы должны исправить неправильное соединение и повторить тест.

Многообмоточные трансформаторы — Руководство электрика по однофазным трансформаторам

Многие трансформаторы содержат более одной первичной обмотки, более одной вторичной обмотки или обе:

Рисунок 6. Многообмоточный трансформатор

Многоботочный распределительный трансформатор
  • Трансформатор, представленный ниже, рассчитан на 50 кВА, 2400/4800 В — 120/240 В.Это означает, что каждая обмотка стороны высокого напряжения рассчитана на максимальное напряжение 2400 В (всегда меньшее из двух напряжений). Каждая обмотка низковольтной стороны рассчитана на максимальное напряжение 120 В. Помните, что любое напряжение выше этих значений может повредить изоляцию.

  • Чтобы подключить сторону высокого напряжения этого трансформатора к шине 4800 В, две обмотки соединены последовательно, так что напряжение на шине делится поровну (2400 В и 2400 В) на каждую из двух обмоток.

Рисунок 7. Первичное подключение

  • Чтобы подключить низковольтную сторону этого трансформатора к шине 240 В, две обмотки должны быть соединены последовательно, чтобы напряжение на шине было разделено поровну (120 В и 120 В) на каждую из двух обмоток.

Рисунок 8. Вторичное соединение

Последовательное и параллельное низковольтное соединение

Каждая катушка этого трансформатора может выдерживать только половину общей кВА. Таким образом, каждая обмотка высокого напряжения и каждая обмотка низкого напряжения рассчитаны на 25 кВА.

Чтобы найти максимальный номинальный ток каждой обмотки на приведенном выше рисунке, просто разделите вольт-амперы на номинальное напряжение:

25 кВА / 2400 = 10,4 А (первичный)

25 кВА / 120 = 208,3 А (вторичный)

Обратите внимание, что мы получаем одинаковое значение для тока независимо от того, используем ли мы одну катушку и половину ВА или обе катушки и полную ВА:

50 кВА / 4800 = 10,4 А (первичный)

50 кВА / 240 = 208.3 А (вторичный)

Соблюдение полярности на стороне подачи

Видео ниже подробно описывает, как и почему важно правильно подключать многообмоточные трансформаторы. В лучшем случае, если трансформатор подключен неправильно, вы увидите нулевое напряжение на вторичной обмотке. В худшем случае вы испытаете kablazalflam (голландский язык для расплавления вашего лица) или мертвого шорта.

Видео оповещение!

В видео ниже рассказывается, как правильно подключить многообмоточный трансформатор, не взорвав себя.

Трехпроводное соединение Рисунок 9. Трехпроводная связь
  • Отключив центральное соединение, мы можем получить 120 В, или отключив обе линии, мы можем получить полное 240 В.

  • Если полная кВА подается с несимметричной нагрузкой, одна из обмоток будет перегружена. (То есть его текущий рейтинг будет превышен.)

Видео оповещение!

В этом видео описывается опасность перегрузки одной из обмоток и способы ее избежать.Трансформаторы практически не будут полностью сбалансированы, поэтому необходимо следить за тем, как они нагружены.

Видео оповещение!

В этом видео объясняется, как трансформатор может работать, если одна из первичных обмоток перегорела. Это концепция потоковой связи. Главное, что нужно учесть, — это то, что если вы потеряете обмотку, у вас будет только половина доступной кВА (мощности).

Атрибуция

Как правильно подключить трансформатор Видео от The Electric Academy находится под лицензией Creative Commons Attribution License.

Как определить минимальную кВА в видео трансформатора от The Electric Academy, находится под лицензией Creative Commons Attribution License.

Видео

Flux linkage от The Electric Academy находится под лицензией Creative Commons Attribution License.

Объясняя основы трансформаторов

Как работают трансформаторы

Важно помнить, что трансформаторы не вырабатывают электроэнергию; они передают электроэнергию от одной цепи переменного тока к другому с помощью магнитной муфты. Сердечник трансформатора используется для обеспечения контролируемого пути для генерируемого магнитного потока. в трансформаторе током, протекающим через обмотки, также известные как катушки.
Основной трансформатор состоит из четырех первичных частей. Детали включают входное соединение, выходное соединение, обмотки или катушки и сердечник.
  • Входные соединения — Входная сторона трансформатора называется первичной стороной , потому что основная электрическая мощность, которую нужно изменить, подключается в этот момент.
  • Выходные соединения — Выходная сторона или вторичная сторона трансформатора — это место, куда направляется электрическая мощность к нагрузке. В зависимости от требований нагрузки поступающая электрическая мощность либо увеличивается, либо уменьшается.
  • Обмотка — Трансформаторы имеют две обмотки, первичную и вторичную. Первичная обмотка катушка, которая потребляет энергию от источника.Вторичная обмотка — это катушка, которая передает энергию на преобразованный или изменил напряжение на нагрузку. Обычно эти две катушки подразделяются на несколько катушек, чтобы уменьшить создание магнитного потока.
  • Core — сердечник трансформатора используется для обеспечения контролируемого пути магнитного потока, генерируемого в трансформаторе. Сердечник, как правило, представляет собой не сплошной стальной стержень, а конструкцию из множества тонких ламинированных стальных листов или слоев.Этот конструкция используется, чтобы помочь устранить и уменьшить нагрев.
    Трансформаторы обычно имеют один из двух типов сердечников: тип сердечника и тип оболочки. Эти два типа отличаются друг от друга по способу размещения первичной и вторичной обмоток вокруг стального сердечника.
    • Тип сердечника — у этого типа обмотки окружают многослойный сердечник.
    • Тип оболочки — В этом типе обмотки окружены ламинированным сердечником.
Когда на первичную обмотку подается входное напряжение, в первичной обмотке начинает течь переменный ток. Поскольку нынешний течет, в сердечнике трансформатора создается изменяющееся магнитное поле. Поскольку это магнитное поле пересекает вторичную обмотку, во вторичной обмотке создается переменное напряжение.
Соотношение между количеством фактических витков провода в каждой катушке является ключом к определению типа трансформатора и того, что выходное напряжение будет. Соотношение между выходным напряжением и входным напряжением такое же, как отношение количества витков между две обмотки.
Выходное напряжение трансформатора выше входного, если вторичная обмотка имеет больше витков провода, чем первичная. обмотка.Выходное напряжение повышается и считается «повышающим трансформатором». Если у вторичной обмотки меньше витков чем первичная обмотка, выходное напряжение ниже. Это «понижающий трансформатор».

Глоссарий — MGM Transformer Company

Параллельная работа : Трансформаторы или обмотки трансформаторов могут быть соединены параллельно при условии, что электрические характеристики подходят для такой работы.

Процент IR (% IR) Процентное сопротивление : Падение напряжения из-за сопротивления проводника при номинальном токе, выраженное в процентах от номинального напряжения.

Percent IX (% IX) Percent Reactance : Падение напряжения из-за реактивного сопротивления при номинальном токе, выраженное в процентах от номинального напряжения.

Процент IZ (% IZ) Полное сопротивление в процентах : Падение напряжения из-за полного сопротивления при номинальном токе, выраженное в процентах от номинального напряжения.

Фаза : Классификация цепи переменного тока. Обычно схемы рассчитаны на однофазные двухпроводные или трехпроводные или трехфазные трехпроводные или четырехпроводные. Однофазные трансформаторы могут использоваться на трехфазном источнике, когда два провода трехфазной системы подключены к первичной обмотке однофазного трансформатора.Вторичный будет однофазным.

Полярность : обозначение относительного мгновенного направления тока во вторичном проводе по сравнению с первичным проводом. Говорят, что два провода имеют одинаковую полярность, когда в любой момент токи в двух выводах текут в одном направлении, как если бы провода были одним куском провода. Полярность однофазного трансформатора классифицируется как аддитивная или вычитающая.

Многофазный : более одной фазы.

Трансформатор потенциала : трансформатор, первичная обмотка которого соединена параллельно цепи и используется для преобразования напряжения до значения, подходящего для измерения или управления.

Коэффициент мощности : Отношение ватт к вольт-амперам в цепи. Выражается в% Вт / ВА.

Устройство сброса давления : Используется для сброса избыточного давления внутри резервуара. Обычно работает при давлении 71/2 фунта на квадратный дюйм. Самостоятельное запечатывание с целевым индикатором, чтобы показать работу.Контакты сигнализации не являются обязательными.

Давление-вакуумный спускной клапан : Автоматический клапан, который открывается и закрывается для поддержания внутреннего давления в заданных пределах.

Параллельная работа трансформаторов | Журнал Electrical India по энергетике и электротехнике, возобновляемым источникам энергии, трансформаторам, распределительным устройствам и кабелям

Параллельная работа трансформаторов

Для питания нагрузки, превышающей номинальную мощность существующего трансформатора, два или более трансформатора могут быть подключены параллельно к существующему трансформатору. Трансформаторы включаются параллельно, когда нагрузка на один из трансформаторов превышает его мощность. Надежность увеличивается при параллельной работе, чем при использовании одного более крупного блока. Затраты, связанные с обслуживанием запасных частей, меньше, когда два трансформатора подключены параллельно.

Как правило, экономично установить другой трансформатор параллельно вместо замены существующего трансформатора одним более мощным блоком. Стоимость запасного блока в случае двух параллельных трансформаторов (равных номиналов) также ниже, чем у одного большого трансформатора.Кроме того, из соображений надежности желательно иметь параллельный трансформатор. При этом, по крайней мере, половина нагрузки может быть запитана при отключенном трансформаторе.

Условия параллельной работы трансформатора

Для параллельного соединения трансформаторов первичные обмотки трансформаторов подключаются к шинам истока, а вторичные обмотки — к шинам нагрузки. Различные условия, которые должны быть выполнены для успешной параллельной работы трансформаторов:

  • Одинаковое соотношение напряжений и коэффициент трансформации (номинальное первичное и вторичное напряжение одинаковое)

— То же процентное сопротивление и соотношение X / R.

  • Идентичное положение устройства РПН
  • Одинаковые номиналы в кВА
  • Одинаковый сдвиг фазового угла (векторная группа одинаковая)
  • Одинаковая частота
  • Такая же полярность
  • Та же последовательность фаз.

Некоторые из этих условий удобны, а некоторые — обязательны. Удобны то же отношение напряжения и коэффициент трансформации, тот же импеданс в процентах, тот же номинал кВА и то же положение переключателя ответвлений. Обязательными условиями являются одинаковый сдвиг фазового угла, одинаковая полярность, одинаковая последовательность фаз и одинаковая частота.Когда не соблюдаются удобные условия, параллельная работа возможна, но не оптимальна.

Одинаковое соотношение напряжений и оборотов (на каждом ответвлении)

Если трансформаторы, включенные параллельно, имеют немного разные отношения напряжений, то из-за неравенства наведенных ЭДС во вторичных обмотках в контуре, образованном вторичными обмотками, в условиях холостого хода будет протекать циркулирующий ток, который может быть очень значительным. больше, чем нормальный ток холостого хода.Ток будет довольно высоким, поскольку полное сопротивление утечки низкое. Когда вторичные обмотки нагружены, этот циркулирующий ток будет иметь тенденцию создавать неравную нагрузку на два трансформатора, и может оказаться невозможным принять полную нагрузку от этой группы из двух параллельных трансформаторов (один из трансформаторов может быть перегружен).

Если два трансформатора с разным соотношением напряжений подключены параллельно с одинаковым первичным напряжением питания, будет разница во вторичных напряжениях.Теперь, когда вторичная обмотка этих трансформаторов подключена к той же шине, будет циркулирующий ток между вторичными обмотками и, следовательно, между первичными обмотками. Поскольку внутреннее сопротивление трансформатора невелико, небольшая разница напряжений может вызвать достаточно высокий циркулирующий ток, вызывающий ненужные дополнительные потери I2R. Рейтинги как первичных, так и вторичных должны быть идентичны. Другими словами, трансформаторы должны иметь одинаковый коэффициент трансформации, то есть коэффициент трансформации.

Одинаковый импеданс в процентах и ​​соотношение X / R

Если два трансформатора соединены параллельно с одинаковым импедансом на единицу, они в основном будут делить нагрузку в соответствии с их номинальными значениями в кВА.Здесь нагрузка в основном одинакова, потому что можно иметь два трансформатора с одинаковым импедансом на единицу, но с разными отношениями X / R. В этом случае линейный ток будет меньше суммы токов трансформатора, и суммарная мощность будет соответственно уменьшена. Разница в отношении значения реактивного сопротивления к значению сопротивления на единицу импеданса приводит к разному фазовому углу токов, переносимых двумя параллельно включенными трансформаторами; один трансформатор будет работать с более высоким коэффициентом мощности, а другой — с более низким коэффициентом мощности, чем у комбинированного выхода.Следовательно, реальная мощность не будет пропорционально распределяться между трансформаторами.

Ток, разделяемый двумя трансформаторами, работающими параллельно, должен быть пропорционален их номинальным значениям МВА. Ток, передаваемый этими трансформаторами, обратно пропорционален их внутреннему сопротивлению.

Из двух приведенных выше утверждений можно сказать, что импеданс параллельно работающих трансформаторов обратно пропорционален их номинальным значениям МВА. Другими словами, импеданс в процентах или значения на единицу импеданса должны быть одинаковыми для всех трансформаторов, работающих параллельно.

При подключении однофазных трансформаторов к трехфазным батареям правильное согласование импеданса становится еще более важным. Помимо следования трем правилам параллельной работы, хорошей практикой является попытка согласовать отношения X / R трех последовательных импедансов, чтобы сбалансировать трехфазные выходные напряжения.

Когда однофазные трансформаторы с одинаковыми номиналами кВА подключены в группу Y, несоответствие импеданса может вызвать значительный дисбаланс нагрузки между трансформаторами.

Давайте рассмотрим следующие варианты корпуса, среди которых импеданс, коэффициент мощности и кВА.

Если однофазные трансформаторы подключены в группу Y-Y с изолированной нейтралью, то намагничивающее сопротивление также должно быть одинаковым по омической основе. В противном случае трансформатор, имеющий наибольшее сопротивление намагничивания, будет иметь самый высокий процент возбуждающего напряжения, увеличивая потери в сердечнике этого трансформатора и, возможно, доводя его сердечник до насыщения.

Случай 1: равное сопротивление, передаточные числа и одинаковая кВА

Стандартный метод параллельного подключения трансформаторов заключается в том, чтобы иметь одинаковые коэффициенты вращения, процентное сопротивление и номинальные значения кВА.Параллельное подключение трансформаторов с одинаковыми параметрами приводит к равному распределению нагрузки и отсутствию циркулирующих токов в обмотках трансформатора.

Пример: Параллельное соединение двух трансформаторов 2000 кВА с полным сопротивлением 5,75%, каждый с одинаковым коэффициентом поворота, к нагрузке 4000 кВА.

Нагрузка на трансформаторы-1 = кВА1 = [(кВА1 /% Z) / ((кВА1 /% Z1) + (кВА2 /% Z2))] X кВАл

кВА1 = 348 / (348 + 348) x 4000 кВА = 2000 кВА.

Нагрузка на трансформаторы-2 = кВА1 = [(кВА2 /% Z) / ((кВА1 /% Z1) + (кВА2 /% Z2))] X кВАл

кВА2 = 348 / (348 + 348) x 4000 кВА = 2000 кВА

Следовательно, кВА1 = кВА2 = 2000 кВА

Случай 2: одинаковые импедансы, отношения и разные кВА

Этот параметр не является обычной практикой для новых установок, иногда два трансформатора с разными кВА и одинаковыми процентными сопротивлениями подключаются к одной общей шине.В этой ситуации разделение тока заставляет каждый трансформатор выдерживать свою номинальную нагрузку. Циркулирующих токов не будет, потому что напряжения (коэффициенты поворота) одинаковы.

Пример: параллельное соединение трансформаторов 3000 кВА и 1000 кВА, каждый с импедансом 5,75%, каждый с одинаковым коэффициентом поворота, подключенных к общей нагрузке 4000 кВА.

Нагрузка на трансформатор-1 = кВА1 = 522 / (522 + 174) x 4000 = 3000 кВА

Нагрузка на трансформатор-1 = кВА2 = 174 / (522 + 174) x 4000 = 1000 кВА

Из приведенных выше расчетов видно, что разные номинальные значения кВА на трансформаторах, подключенных к одной общей нагрузке, это деление тока приводит к тому, что каждый трансформатор нагружается только до его номинального значения кВА.Ключевым моментом здесь является то, что процентное сопротивление одинаковое.

Случай 3: Неравное сопротивление, но одинаковые отношения и кВА

В основном этот параметр используется для увеличения мощности электростанции путем параллельного подключения существующих трансформаторов с одинаковым номиналом кВА, но с различным процентным сопротивлением. Это обычное дело, когда бюджетные ограничения ограничивают покупку нового трансформатора с такими же параметрами. Важно понимать, что ток делится обратно пропорционально импедансу, и больший ток протекает через меньший импеданс.Таким образом, трансформатор с более низким процентным сопротивлением может быть перегружен при большой нагрузке, в то время как другой трансформатор с более высоким импедансом будет слегка нагружен.

Пример: два параллельно включенных трансформатора 2000 кВА, один с импедансом 5,75%, а другой с импедансом 4%, каждый с одинаковым коэффициентом поворота, подключенные к общей нагрузке 3500 кВА.

Нагрузка на трансформатор-1 = кВА1 = 348 / (348 + 500) x 3500 = 1436 кВА

Нагрузка на трансформатор-2 = кВА2 = 500 / (348 + 500) x 3500 = 2064 кВА

Видно, что поскольку процентное сопротивление трансформатора не совпадает, они не могут быть нагружены до их комбинированного номинального значения в кВА.Распределение нагрузки между трансформаторами неравномерно. При нагрузке ниже комбинированной номинальной кВА трансформатор с полным сопротивлением 4% перегружается на 3,2%, а трансформатор с полным сопротивлением 5,75% нагружается на 72%.

Случай 4: Неравный импеданс и одинаковые коэффициенты в кВА

Это трансформаторы, которые редко используются в промышленных и коммерческих объектах, подключенных к одной общей шине с разной кВА и разным импедансом в процентах. Однако может быть такая ситуация, когда две несимметричные подстанции могут быть связаны вместе с помощью шин или кабелей, чтобы обеспечить лучшую поддержку напряжения при запуске большой нагрузки.

Если процентное сопротивление и номинальные значения кВА отличаются, следует соблюдать осторожность при загрузке этих трансформаторов.

Пример: два параллельно включенных трансформатора: один 3000 кВА (кВА1) с импедансом 5,75%, а другой — 1000 кВА (кВА2) с импедансом 4%, каждый с одинаковым передаточным числом, подключенных к общей нагрузке 3500 кВА.

Нагрузка на трансформатор-1 = кВА1 = 522 / (522 + 250) x 3500 = 2366 кВА

Нагрузка на трансформатор-2 = кВА2 = 250 / (522 + 250) x 3500 = 1134 кВА

Поскольку процентное сопротивление трансформатора на 1000 кВА меньше, он перегружается с номинальной нагрузкой, меньшей комбинированной.

Случай 5: равное сопротивление и неодинаковые коэффициенты кВА

Небольшие перепады напряжения вызывают циркуляцию большого количества тока. Важно отметить, что параллельно включенные трансформаторы всегда должны подключаться к одному ответвлению. Циркулирующий ток полностью не зависит от нагрузки и разделения нагрузки. Если трансформаторы полностью загружены, возникнет значительный перегрев из-за циркулирующих токов. Следует помнить, что циркулирующие токи не протекают по линии, их нельзя измерить, если контрольное оборудование установлено выше или ниже по потоку от общих точек подключения.

Пример: два трансформатора по 2000 кВА, подключенные параллельно, каждый с импедансом 5,75%, одинаковым отношением X / R (8), трансформатор 1 с отводом, отрегулированным на 2,5% от номинала, и трансформатор 2 с отводом на номинал. Каков процент циркулирующего тока (% IC)?

% Z1 = 5,75, поэтому% R ’=% Z1 / √ [(X / R) 2 + 1)] = 5,75 / √ ((8) 2 + 1) = 0,713

% R1 =% R2 = 0,713

% X1 =% R x (X / R) =% X1 =% X2 = 0,713 x 8 = 5,7

Пусть% e = разница в соотношении напряжений, выраженная в процентах от нормы, и k = кВА1 / кВА2

Циркуляционный ток% IC =% eX100 / √ (% R1 + k% R2) 2 + (% Z1 + k% Z2) 2.

% IC = 2,5X100 / √ (0,713 + (2000/2000) X0,713) 2 + (5,7 + (2000/2000) X5,7) 2

% IC = 250 / 11,7 = 21,7

Циркуляционный ток составляет 21,7% от тока полной нагрузки.

Случай 6: Неравный импеданс, кВА и разные соотношения:

Этот тип параметра маловероятен на практике. Если и отношения, и импеданс различны, циркулирующий ток (из-за неравного отношения) должен быть объединен с долей каждого трансформатора в токе нагрузки, чтобы получить фактический общий ток в каждом блоке.

При единичном коэффициенте мощности 10-процентный циркулирующий ток (из-за неравных соотношений поворотов) дает только половину процента от общего тока.

При более низких коэффициентах мощности циркулирующий ток резко изменится.

Пример: Два трансформатора, соединенных параллельно, 2000 кВА1 с импедансом 5,75%, отношением X / R 8, 1000 кВА2 с импедансом 4%, отношением X / R 5, 2000 кВА1 с отводом, отрегулированным на 2,5% от номинального и 1000 кВА2 с отводом от номинала.

% Z1 = 5.75, Итак,% R ’=% Z1 / √ [(X / R) 2 + 1)] = 5,75 / √ ((8) 2 + 1) = 0,713

% X1 =% R x (X / R) = 0,713 x 8 = 5,7

% Z2 = 4, поэтому% R2 =% Z2 / √ [(X / R) 2 + 1)] = 4 / √ ((5) 2 + 1) = 0,784

% X2 =% R x (X / R) = 0,784 x 5 = 3,92

Пусть% e = разница в соотношении напряжений, выраженная в процентах от нормы, и k = кВА1 / кВА2

Циркуляционный ток% IC =% eX100 / √ (% R1 + k% R2) 2 + (% Z1 + k% Z2) 2.

% IC = 2,5X100 / √ (0,713 + (2000/2000) X0,713) 2 + (5,7 + (2000/2000) X5,7) 2

% IC = 250/13.73 = 18,21.

Циркуляционный ток составляет 18,21% от тока полной нагрузки.

Такая же полярность

Полярность трансформатора означает мгновенное направление наведенной ЭДС во вторичной обмотке. Если мгновенные направления наведенной вторичной ЭДС в двух трансформаторах противоположны друг другу, когда на оба трансформатора подается одинаковая входная мощность, то говорят, что трансформаторы имеют противоположную полярность.

Трансформаторы должны быть правильно подключены с учетом их полярности.Если они подключены с неправильной полярностью, то две ЭДС, индуцированные во вторичных обмотках, которые параллельны, будут действовать вместе в локальной вторичной цепи и вызвать короткое замыкание. Полярность всех трансформаторов, работающих параллельно, должна быть одинаковой, в противном случае в трансформаторе будет течь большой циркулирующий ток, но нагрузка от этих трансформаторов не будет. Если мгновенные направления наведенной вторичной ЭДС в двух трансформаторах одинаковы, когда на оба трансформатора подается одинаковая входная мощность, то говорят, что трансформаторы имеют одинаковую полярность.

Та же последовательность фаз

Последовательность фаз линейных напряжений обоих трансформаторов должна быть одинаковой для параллельной работы трехфазных трансформаторов. Если последовательность фаз неправильная, в каждом цикле каждая пара фаз будет закорочена. Это условие необходимо строго соблюдать при параллельной работе трансформаторов.

Одинаковый фазовый сдвиг: (нулевой относительный фазовый сдвиг между напряжениями вторичной линии)

Обмотки трансформатора могут быть соединены различными способами, которые создают разные величины и фазовые сдвиги вторичного напряжения.Все соединения трансформатора можно разделить на отдельные векторные группы.

Группа 1: нулевое смещение фазы (Yy0, Dd0, Dz0)
Группа 2: смещение фазы на 180 ° (Yy6, Dd6, Dz6)
Группа 3: смещение фазы на -30 ° (Yd1, Dy1, Yz1)
Группа 4: + Сдвиг фаз 30 ° (Yd11, Dy11, Yz11)

Чтобы иметь нулевой относительный фазовый сдвиг напряжений вторичной обмотки, трансформаторы, принадлежащие к одной группе, могут быть подключены параллельно. Например, два трансформатора с подключениями Yd1 и Dy1 могут быть подключены параллельно.

Трансформаторы групп 1 и 2 могут подключаться параллельно только с трансформаторами их собственной группы. Однако трансформаторы групп 3 и 4 можно подключить параллельно, изменив последовательность фаз одного из них. Например, трансформатор с подключением Yd1 1 (группа 4) можно подключить параллельно к трансформатору с подключением Dy1 (группа 3), поменяв местами чередование фаз как первичных, так и вторичных клемм трансформатора Dy1.

Параллелить можно только Dy1 и Dy11, пересекая две входящие фазы и те же две выходящие фазы на одном из трансформаторов, поэтому, если у кого-то есть трансформатор DY11, он может пересекать фазы B&C на первичной и вторичной обмотках, чтобы изменить + 30 градусов сдвиг фазы на -30 градусов, который будет параллелен Dy1, при условии, что все остальные пункты выше удовлетворены.

Те же номиналы в кВА

Если два или более трансформатора подключены параллельно, процент распределения нагрузки между ними зависит от их номинальных значений. Если все имеют одинаковый рейтинг, они будут разделять равные нагрузки.

Трансформаторы с разными номиналами кВА будут делить нагрузку практически (но не точно) пропорционально своим номинальным значениям, при условии, что отношения напряжений идентичны, а процентные импедансы (при их собственном номинальном значении кВА) идентичны или очень близки в этих случаях обычно доступно более 90% суммы двух оценок.Рекомендуется, чтобы трансформаторы, номинальные значения кВА которых различаются более чем на 2: 1, не работали постоянно параллельно.

Трансформаторы, имеющие разные номинальные значения кВА, могут работать параллельно с разделением нагрузки таким образом, чтобы каждый трансформатор нес свою пропорциональную долю от общей нагрузки. Для достижения точного разделения нагрузки необходимо, чтобы трансформаторы были намотаны с одинаковым соотношением витков и чтобы процентное соотношение полное сопротивление всех трансформаторов должно быть одинаковым, если каждый процент выражается на базе кВА соответствующего трансформатора.Также необходимо, чтобы отношение сопротивления к реактивному сопротивлению у всех трансформаторов было одинаковым. Для удовлетворительной работы циркулирующий ток для любых комбинаций соотношений и импедансов, вероятно, не должен превышать десяти процентов номинального тока полной нагрузки меньшего блока.

Преимущества параллельной работы трансформатора

Повышение эффективности электрической системы

  • Как правило, силовой трансформатор обеспечивает максимальный КПД при полной нагрузке.Если запустить несколько трансформаторов параллельно, можно будет включить только те трансформаторы, которые обеспечат общую нагрузку, приближаясь к своей полной номинальной нагрузке на это время.
  • При увеличении нагрузки нельзя переключать никого через другой трансформатор, подключенный параллельно, чтобы удовлетворить общую потребность. Таким образом можно запустить систему с максимальной эффективностью.

Повышение доступности электрической системы

  • Если несколько трансформаторов работают параллельно, можно отключить любой из них для технического обслуживания.Другие параллельные трансформаторы в системе будут обслуживать нагрузку без полного отключения электроэнергии.

Повышение надежности энергосистемы

  • Если один из параллельно работающих трансформаторов отключился из-за неисправности, другие параллельные трансформаторы в системе будут разделять нагрузку, поэтому подача питания не может быть прервана, если общие нагрузки не вызывают перегрузки других трансформаторов.

Повышение гибкости электрической системы

  • Есть вероятность увеличения или уменьшения будущего спроса на энергосистему.Если прогнозируется, что спрос на мощность будет увеличиваться в будущем, необходимо обеспечить параллельное подключение трансформаторов в системе для удовлетворения дополнительного спроса, потому что с точки зрения бизнеса неэкономично устанавливать одиночный трансформатор с большей номинальной мощностью путем прогнозирования. повышенный спрос в будущем, поскольку это ненужное вложение денег.
  • Опять же, в будущем спрос снизится, трансформаторы, работающие параллельно, могут быть удалены из системы, чтобы сбалансировать капитальные вложения и их возврат.

Недостатки параллельной работы трансформатора

  • Увеличение токов короткого замыкания, которые увеличивают необходимую мощность выключателя.
  • Опасность протекания циркулирующих токов от одного трансформатора к другому трансформатору. Циркуляционные токи, снижающие нагрузочную способность и повышающие потери.
  • Рейтинги автобусов могут быть слишком высокими.
  • Трансформаторы параллельной работы значительно снижают импеданс трансформатора, т. Е. Параллельные трансформаторы могут иметь очень низкий импеданс, что создает высокие токи короткого замыкания.
    Следовательно, необходимы ограничители тока, например реакторы, предохранители, шины с высоким сопротивлением и т. д.
  • Управление и защита трех параллельно подключенных устройств более сложны.
  • Это не обычная практика в этой отрасли.

Заключение

Рекомендации по нагрузке для параллельных трансформаторов просты, если только кВА, процентные сопротивления или отношения не отличаются. Когда коэффициенты поворотов параллельного трансформатора и процентное сопротивление одинаковы, на каждом трансформаторе будет одинаковое разделение нагрузки.Если номинальные значения кВА параллельно включенного трансформатора одинаковы, но процентное сопротивление различается, произойдет неравное разделение нагрузки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *