ТОЭ Лекции- №37 Способы соединения обмоток трехфазных генераторов

В обмотках трехфазного генератора индуктируются синусоидальные ЭДС, сдвину¬тые по фазе на 120°:

eA=Emsinωt ↔ EA=Eфej0°

eB=Emsin(ωt-120°) ↔ EB=Eфe-j120°

eC=Emsin(ωt-240°)=Emsin(ωt+120°) ↔ EC=Eфej120°

Между собой фазные обмотки генератора могут соединяться по двум различным схемам: звездой (у) и треугольником (Δ).

При соединении в звезду концы фазных обмоток (фаз) генератора соединяются в общую точку N, которая называется нулевой или нейтральной, а начала обмоток служат линейными выводами генератора А, В, С (рис. 37.1).

Векторная диаграмма напряжений трехфазного генератора при соединении его фазных обмоток в звезду показана на рис. 37.2 а, б.

В трехфазном генераторе различают фазные и линейные напряжения. Фазными называются напряжения между началами и концами фазных обмоток или между одним из линейных выводов А, В, С и нулевым выводом N.

Фазные напряжения равны фазным ЭДС: UА=ЕА, UВ=ЕВ, UС=ЕС (индекс N при фазных напряжениях опускается, так как φN = 0). Линейными называются напряжения между двумя линейными выводами А, В, С. Линейные напряжения равны векторной разности двух фазных напряжений: UАВ =UА — UВ; UВС =UВ — UС; UСА =UС — UА .

При расчете трехфазных цепей комплексным методом фазные и линейные напряжения генератора представляются в комплексной форме, при этом один из векторов системы принимают за начальный и совмещают его с вещественной осью, а остальные вектора получают начальные фазы согласно их углам сдвига по отношению к начальному вектору. На рис. 37.2 а показан вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается фазное напряжение фазы А. В этом случае фазные напряжения генератора в комплексной форме получат вид : UA=Uфej0°, UB=Uфe-j120°, UC=Uфej120°, линейные напряжения: UAB=Uлej30°, UBC=Uлe-j90°, UCA=Uлej150°.

На рис. 37.2 б показан другой вариант представления напряжений трехфазного генератора в комплексной форме, когда за начальный вектор принимается линейное напряжение UAB. В этом случае фазные напряжения генератора в комплексной форме получат вид: UA=Uфe-j30°, UB=Uфe-j150°, UC=Uфej90°, линейные напряжения: UAB=Uлej0°, UBC=Uлe-j120°, UCA=Uлej120°.

Из геометрии получаем соотношение между модулями линейного и фазного напряжений: UЛ = 2UФ cos 30° =2UФ √(3)/2 =√(3) UФ.

Обмотки трехфазного генератора теоретически можно включать по схеме треуголь¬ника. В такой схеме конец каждой предыдущей фазы соединяется с началом последующей, а точки соединения служат линейными выводами генератора (рис. 37.3).

При соединении фаз в треугольник в его контуре действует сумма фазных ЭДС: ∑e = еАВ + еВС + еСА. В реальных трехфазных генераторах технически невозможно обеспечить равенство нулю для суммарной ЭДС. Так как собственные сопротивления обмоток генератора малы, то даже незначительная по величине суммарная ЭДС ∑e > 0 может вызвать в контуре треугольника уравнительный ток, соизмеримый с номинальным током генератора, что привело бы к дополнительным потерям энергии и снижению КПД генератора. По этой причине обмотки трехфазных генераторов запрещается соединять по схеме треугольника.

Номинальным напряжением в трехфазной системе называется линейное напряжение. Номинальное напряжение принято выражать в киловольтах (кВ). Шкала номинальных трехфазных напряжений, применяемых на практике, имеет вид: 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750. На потребительском уровне номинальное трехфазное напряжение может указываться в виде отношения UЛ⁄UФ, например: UЛ/UФ = 380 ⁄ 220 В.

Схемы соединений обмоток трехфазных трансформаторов

Подробности
Категория: Практика
  • трансформатор
  • схемы
  • обмотки

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг—звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН— в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).

ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения — т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следующем сочетании напряжений па стороне ВН и НН (кВ)  на стороне обмотки низшего напряжения соединение в зигзаг—звезду.
Соединение в зигзаг — звезду дает возможность при несимметрии нагрузки на стороне НН сглаживать на стороне ВН эту неравномерность. Кроме того, схема зигзага допускает иметь три напряжения, например 127, 220 и 380 е.
Другие схемы соединений обмоток для силовых трансформаторов применяются крайне редко. Область применения таких схем ограничивается трансформаторами специального назначения (электропечными, для питания ртутных выпрямительных установок, для преобразования частоты, числа фаз переменного тока, электросварочными и др.).
а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети. При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна.
В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.

Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.
Обмотки СН соединяются большей частью по схеме Y0.
Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 в при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 е.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям  будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:

б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.
Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.


Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.
В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.
В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы. Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.

Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.
Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.
г) Соединение обмоток по схеме А
Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы

Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:

т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов
а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

  • Назад
  • Вперёд
    org/BreadcrumbList»>
  • Вы здесь:  
  • Главная
  • Оборудование
  • Трансформаторы
  • Практика
  • Неисправности трансформаторов

Еще по теме:

  • Схемы и группы соединения трансформаторов
  • Группы соединений обмоток трансформатора
  • Схемы соединений обмоток трехфазных трансформаторов
  • Схемы обмоток трансформаторов для ПБВ и РПН
  • Схемы соединения обмоток автотрансформаторов

Трансформаторы

Соединения трехфазного трансформатора | electriceasy.com

Подключение трехфазного трансформатора В трехфазной системе три фазы могут быть соединены по схеме «звезда» или «треугольник». Если вы не знакомы с этими конфигурациями, изучите следующее изображение, которое объясняет конфигурацию звезды и треугольника. В любой из этих конфигураций между любыми двумя фазами будет разность фаз 120°.

Обмотки трехфазного трансформатора могут быть соединены в различных конфигурациях как (i) звезда-звезда, (ii) треугольник-треугольник, (iii) звезда-треугольник, (iv) треугольник-звезда, (v) открытый треугольник и (vi) Связь со Скоттом. Эти конфигурации объясняются ниже.

Соединение звезда-звезда (Y-Y)
  • Соединение звезда-звезда обычно используется для небольших высоковольтных трансформаторов. Благодаря соединению звездой количество необходимых витков на фазу уменьшается (поскольку фазное напряжение при соединении звездой составляет только 1/√3 линейного напряжения). Таким образом, количество необходимой изоляции также уменьшается.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Линейные напряжения с обеих сторон находятся в фазе друг с другом.
  • Это соединение можно использовать, только если подключенная нагрузка сбалансирована.
Треугольник-треугольник (Δ-Δ)
  • Это соединение обычно используется для больших низковольтных трансформаторов. Количество требуемых фаз/витков относительно больше, чем при соединении звезда-звезда.
  • Отношение линейных напряжений на первичной и вторичной сторонах равно коэффициенту трансформации трансформаторов.
  • Это соединение можно использовать даже при несбалансированной нагрузке.
  • Еще одним преимуществом этого типа подключения является то, что даже если один трансформатор отключен, система может продолжать работать в режиме открытого треугольника, но с меньшей доступной мощностью.
Звезда-треугольник ИЛИ звезда-треугольник (Y-Δ)
  • Первичная обмотка — звезда-звезда (Y), соединенная с заземленной нейтралью, а вторичная обмотка — треугольник.
  • Это соединение в основном используется в понижающем трансформаторе на конце линии электропередачи на подстанции.
  • Отношение вторичного сетевого напряжения к первичному составляет 1/√3 коэффициента трансформации.
  • Сдвиг между первичным и вторичным линейным напряжением составляет 30°.
Треугольник-звезда ИЛИ треугольник-звезда (Δ-Y)
  • Первичная обмотка соединена треугольником, а вторичная обмотка соединена звездой с заземленной нейтралью. Таким образом, его можно использовать для предоставления 3-фазного 4-проводного обслуживания.
  • Этот тип соединения в основном используется в повышающем трансформаторе в начале линии передачи.
  • Отношение вторичного сетевого напряжения к первичному в √3 раза превышает коэффициент трансформации.
  • Сдвиг между первичным и вторичным линейным напряжением составляет 30°.

Вышеупомянутые конфигурации подключения трансформатора показаны на следующем рисунке.


Соединение «открытый треугольник» (V-V)

Используются два трансформатора, первичные и вторичные соединения выполнены, как показано на рисунке ниже. Соединение «открытый треугольник» может быть использовано, когда один из трансформаторов в группе Δ-Δ отключен и обслуживание должно быть продолжено до ремонта или замены неисправного трансформатора. Его также можно использовать для небольших трехфазных нагрузок, где нет необходимости в установке полной трехтрансформаторной группы. Общая грузоподъемность соединения «открытый треугольник» составляет 57,7% по сравнению с соединением «треугольник-треугольник».


Связь Скотта (Т-Т)

В этом типе подключения используются два трансформатора. Один из трансформаторов имеет центральные ответвления как на первичной, так и на вторичной обмотках (он называется главным трансформатором). Другой трансформатор называется тизерным трансформатором. Соединение Скотта также можно использовать для преобразования трехфазного тока в двухфазный. Подключение выполняется, как показано на рисунке ниже.


Новое сообщение Старый пост Главная

Частичная обмотка

Для того, чтобы понять двигатели, работающие по схеме «звезда-треугольник» и двигатели, работающие по схеме «звезда-треугольник», мы должны обсудить терминологию подключения и пуска двигателя применительно к трехфазным двигателям. Самый простой и экономичный способ запуска трехфазного асинхронного двигателя с короткозамкнутым ротором — с помощью пускателя полного напряжения. Этот метод запуска называется:

Пуск при полном напряжении или
Пуск от сети (ATL) или
Пуск от сети (DOL)

Двигатель, предназначенный для работы при одном напряжении, требует только трех проводов и подходит для пуска при полном напряжении. Внутренние соединения катушек двигателя могут быть соединены звездой (Y) (также известной как звезда (A) или треугольник ( ). Для этого типа двигателя не требуется схема подключения, поскольку электрик просто соединяет три провода двигателя (которые могут быть обозначены T1, T2 и T3) к соответствующим клеммам пускателя, которые подключаются к линиям электропитания, L1, L2 и L3. Схемы подключения см. на рисунке ниже.

Многие OEM-производители и большинство дистрибьюторов предпочитают иметь в наличии двигатели, которые можно использовать с различными источниками питания. По этой причине мы находим много двигателей, рассчитанных на двойное напряжение. Самый распространенный отечественный двигатель в рамах NEMA — это 9свинцовый, двигатель двойного напряжения, рассчитанный на 230/460 вольт. Обратите внимание, соотношение напряжений составляет 1:2. Для работы на 230 вольт катушки соединены параллельно; для работы на 460 вольт, последовательно (см. схемы ниже).

Во многих зарубежных странах есть электропитание 380 вольт и 220 вольт, 50 герц; поэтому было бы желательно иметь на складе двигатели с такими сочетаниями напряжений. Так получилось, что отношение между двигателем, соединенным треугольником, и двигателем, соединенным звездой, составляет 1 3 или 1:1,173 или 220:380 вольт, как показано на следующих схемах. Этот тип двигателя имеет шесть выводов, обозначенных, как показано ниже.

Приведенный выше двигатель также подходит для пуска при пониженном напряжении, известного как звезда-треугольник или звезда-треугольник, от источника питания 220 В. В пусковом режиме специальный магнитный пускатель соединяет катушки двигателя в звезду. Обратите внимание, что при соединении звездой двигатель должен работать при напряжении 380 вольт, чтобы развивать крутящий момент при полной нагрузке; но поскольку мы подаем только 220 вольт, двигатель будет развивать только 33% крутящего момента и будет потреблять только 33% нормального пускового тока. По истечении заданного времени стартер меняет обмотку двигателя со звезды на треугольник, что является рабочим соединением при полном напряжении.

Обратите внимание, что на следующем рисунке один из контакторов «S» показан пунктиром, поскольку некоторые производители пускателей используют только два контактора вместо трех. Также обратите внимание, что двигатель 3/50/220/380 можно также назвать двигателем 3/50/220 с пуском по схеме звезда-треугольник.

Контакторы 1M и «S»
Замыкание во время пуска
Контакторы 1M и 2M
Замыкаются во время работы, контакторы «S» размыкаются

Не всегда понятно, чего хочет покупатель. В типичном запросе на трехфазный двигатель может быть указано, что источник питания 50 Гц, 220/380 вольт. Обычно это означает 380 вольт, три фазы/220 вольт, одна фаза.

Если запрашивается двигатель 3/50/220/380, заказчик может использовать двигатель с источником питания 220 В со пускателем по схеме «звезда-треугольник». Он также может продавать двигатели в разные страны с питанием от 220 вольт или 380 вольт.

Изредка попадаются запросы на моторы 3/50/380/660. Мы не можем поставить такой двигатель с номинальным размером NEMA, если заказчик не хочет двигатель на 380 вольт, подходящий для пуска по схеме «звезда» и «треугольник». Причина, по которой мы не можем поставить такой двигатель, заключается в том, что наша система изоляции с произвольной обмоткой, используемая в двигателях с рамой NEMA, одобрена только для 600 вольт плюс 10%. Согласно диаграмме, озаглавленной «Мировое электроснабжение», только две страны, Финляндия и Восточная Германия, имеют электроснабжение на 660 вольт. Есть также некоторые электростанции, которые, как правило, используют 660-вольтовое распределение для своих внутризаводских электростанций. оборудование

Некоторые дистрибьюторы или OEM-производители предпочитают иметь в наличии двигатели с двойным пуском по схеме звезда-треугольник, такие как 3/50/220/440. Для этого типа двигателя требуется двенадцать выводов, и он подключается параллельно по схеме «звезда-треугольник» для низкого напряжения и последовательно по схеме «звезда-треугольник» для высокого напряжения. См. рисунок ниже.

220 В
440 вольт

Часть обмотки. В этом методе использовалась только часть (обычно половина, но иногда и две трети) обмотки двигателя, что увеличивало импеданс, воспринимаемый энергосистемой. Его следует использовать только для восстановления напряжения, и его нельзя оставлять на пусковом соединении более чем на 2–3 секунды. Ожидается, что двигатель не будет ускоряться при пусковом соединении и может даже не вращаться.

Начало обмотки части

Пусковые характеристики:

  1. Пусковой ток составляет 60-75% от нормального, в зависимости от конкретного соединения обмотки.
  2. Очень низкий пусковой момент (может даже не провернуть вал).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *