Содержание

Последовательное и параллельное включение обмоток.

Бывает ситуация, когда у трансформатора нет обмотки на нужное напряжение или ток, зато есть много всяких разных обмоток. Что делать?

Для увеличения напряжения, обмотки можно соединять последовательно. При этом общее напряжение будет равно сумме напряжений всех обмоток. Максимальный ток будет равен наименьшему из номинальных токов всех этих обмоток.

Обмотки надо сфазировать, иначе напряжения в них могут не складываться, а вычитаться (можно ра-

ботать и в такой ситуации, но КПД трансформатора снизится). Делается это так: первая и вторая обмотки соединяются последовательно, а к их концам подключается вольтметр переменного тока (рис. 16).

Вольтметр должен показать сумму напряжений обмоток 1 и 2 (это синфазное, или согласное включение обмоток). Если показания вольтметра меньше (в случае противофазного, или встречного включения он покажет разность напряжений обмоток), выводы обмотки 2 надо поменять местами.

В случае, когда последовательно соединяется большее количество обмоток, то все повторяется, при этом роль обмотки 1 выполняют уже соединенные обмотки, а роль обмотки 2 – вновь подключаемая обмотка.

На рис. 16 точкой возле обмотки обозначается ее условное начало. Оно имеет такой смысл: если на выводе с точкой первичной обмотки присутствует положительный полупериод напряжения (грубо говоря «плюс»), то и на выводах с точкой всех вторичных обмоток в этот момент также «плюс». Поэтому, зная условные начала обмоток, можно сразу соединить все обмотки синфазно. К сожалению, на самом трансформаторе начала обмоток обычно не обозначают.

Если в трансформаторе много одинаковых вторичных обмоток на маленький ток, то по идее их можно соединить параллельно, тогда общий их ток будет равен сумме токов отдельных обмоток.

На самом деле это очень «тонкий» вопрос. В жизни практически никогда не бывает, чтобы две обмотки были абсолютно одинаковыми. Хоть малюсенькая разница в их напряжениях, но есть.

И внутри параллельных обмоток могут возникнуть уравнительные токи иногда маленькой, а иногда и большой величины. Может получиться, что трансформатор здорово греется, а наружу тока почти не выдает. Но бывает и так, что производители мотают трансформатор в несколько проводов одновременно. Тогда обмотки получаются практически совсем одинаковыми и такие обмотки параллельно соединять можно (хотя, ГОСТ 14233-84 «Трансформаторы питания для бытовой аппаратуры» дает допуск на асимметрию обмоток, включаемых параллельно, до 3% от напряжения обмотки – это довольно большое рассогласование!). При этом очень важно правильно сфазировать обмотки, иначе будет короткое замыкание. Только надо быть абсолютно уверенным в том, что обмотки одинаковы. Поэтому давайте для надежности пользоваться таким правилом:

Если производитель явно указывает, что обмотки трансформатора можно соединять параллельно, то можно. Если такого явного указания нет – то нельзя.

Как правильно сфазировать обмотки? Начала всех обмоток соединить вместе – это будет начало общей обмотки. Конец общей обмотки составят соединенные вместе концы всех обмоток.

Если неизвестны начала и концы обмоток, то сначала соедините между собой один провод от одной обмотки и один от другой. Подайте питание на трансформатор и измерьте напряжение между оставшимися концами этих обмоток (рис. 17).

Если между ними напряжение равное удвоенному напряжению каждой из обмоток, то концы одной из обмоток надо поменять местами. Снова подайте питание и снова измерьте напряжение. Если оно равно нулю, то все ОК, соединяете концы, между которыми измеряли напряжение и пользуетесь. Если же напряжение не равно нулю, то обмотки разные, и их паралле- лить нельзя!

А если напряжение на двух обмотках получилось не

Рис. 17

ноль, но очень близкое к нулю? Давайте рассмотрим пример. Сопротивление вторичной обмотки тороидального трансформатора 75ВА 2×28В равно примерно 0,5 Ом. Допустим мы хотим получить такую обмотку из двух, каждая из которых рассчитана на вдвое меньший ток. Тогда сопротивление каждой обмотки вдвое выше и будет равно 1 Ом. С точки зрения уравнительных токов обмотки включены последовательно (значит, общее сопротивление удваивается) и к ним прикладывается разность напряжений между обмотками. Допустим, эта разность напряжений равна 0,5 вольт. Тогда уравнительный ток будет

2.            Если вольтметр показывает разность напряжений обмоток в точности равную нулю, это означает, что и формы напряжений обмоток, и их величины одинаковы (что уже само по себе редкое явление). Но кто поручится, что при изменении напряжения в сети, или изменении тока, потребляемого нагрузкой, формы токов так одинаковыми и останутся? Это не всегда случается даже у однотипных трансформаторов (из-за разброса свойств стали они могут немного по-разному насыщаться), а для трансформаторов разных типов это вообще нереально.

Поэтому давайте не будем рисковать, и не будем создавать себе возможные проблемы, соединяя параллельно обмотки разных трансформаторов!

Бросок тока при включении трансформатора. При включении трансформатора в сеть даже на холостом ходу возникает всплеск тока (пусковой ток, являющийся следствием переходного процесса в трансформаторе), который может превышать номинальный в десятки раз. Длительность пускового тока обычно не превышает 0,02…0,03 секунды, поэтому он не приводит к перегреву обмоток. Однако в этот момент на проводники обмоток действуют значительные электромагнитные силы, которые могут сдвинуть плохо закрепленные витки. С течением времени витки разбалтываются, и акустический шум трансформатора растет.

Другим неприятным последствием пускового тока является перегорание предохранителя в цепи первичной обмотки.

Величина пускового тока определяется как моментом времени включения (по отношению к начальной фазе сетевого напряжения), так и параметрами трансформатора. В частности, повышение числа витков первичной обмотки снижает пусковой ток, что еще раз говорит в пользу применения трансформаторов с пониженной рабочей индукцией. И наоборот, у трансформатора, работающего близко к насыщению, бросок тока при включении может быть очень большим.

Трансформаторы с пониженной рабочей индукцией. Существует мнение (вполне оправданное), что хорошие результаты дает применение в усилителях трансформаторов с пониженной индукцией, работающих практически на линейном участке кривой намагничивания (конец участка А – начало участка В на рис.

9). Действительно, снижение индукции уменьшает потоки рассеяния, а значит и магнитные поля трансформатора, а также снижает пусковой ток. Это достигается увеличением числа витков в обмотках в 1,2…1,3 раза выше номинального. Уменьшение полей рассеяния снижает индуктивность обмоток, но из-за повышения длины провода, возрастает их активное сопротивление, поэтому просадки напряжения под нагрузкой практически не меняются, а вот нагрев обмоток растет. Для нормализации нагрева увеличивают мощность трансформатора, повышая диаметр проводов обмоток.

Таким образом, чтобы получить трансформатор с пониженной рабочей индукцией, необходимо изготовить трансформатор с мощностью в 1,3…1,5 раз больше требуемой, все обмотки которого рассчитаны на напряжение в 1,2…1,3 раза больше необходимого.

Необходимо отметить, что при этом улучшается только работа самого трансформатора, на усилитель это никак не сказывается (если только магнитные поля трансформатора не действуют на усилитель, но к этому необходимо стремиться в любом случае).

Поэтому затраты на такой специальный трансформатор практически никогда не окупаются (кроме техники очень высокого качества, там применение подобного трансформатора не только оправдано, но и зачастую просто необходимо), а в конструкциях начинающих радиолюбителей – наверняка. Поэтому «низкоиндукционный» трансформатор имеет смысл применять, если он уже есть, а если его нет, то и не надо.

Подмагничивание сердечника постоянным током. Трансформатор – устройство, предназначенное для работы на переменном токе (причем только своей, или близкой к ней частоты – если частота тока сильно отличается от номинальной, он может работать хуже или не работать вообще). Постоянный ток он не преобразует, потому что ЭДС в обмотках наводится только изменяющимся магнитным полем, которое получается, если ток переменный. И на постоянный ток не влияет индуктивность обмоток. Поэтому если на трансформатор подать 220 вольт постоянного тока, трансформатор сгорит – активное сопротивление первичной обмотки маленькое, и ток будет огромным.

А что случится, если через обмотку все же протекает постоянный ток? На переменном токе даже очень большие токи обмоток практически не изменяют рабочий магнитный поток, так как влияния первичной и вторичной обмоток взаимно компенсируются. На постоянном токе взаимодействия обмоток и взаимной компенсации токов не происходит. Постоянный ток создаст ничем не компенсируемое магнитное поле, которое будет подмагничивать сердечник, изменяя индукцию в нем. Если это поле достаточно велико, то сердечник начнет насыщаться со всеми вытекающими отсюда последствиями.

Так что появления постоянного тока (заметной величины) в трансформаторе следует избегать. Исключение составляют выходные трансформаторы ламповой техники – в них предусмотрен зазор в сердечнике для исключения насыщения. Но и в таком случае трансформатору работать не очень комфортно.

Источник: Рогов И.Е. Конструирование источников питания звуковых усилителей. – Москва: Инфра- Инженерия, 2011. – 160 с.

Согласное, встречное включения катушек

Токи, входящие в одноимённые зажимы магнитосвязанных катушек, дают согласное направление магнитных потоков в этих катушек.

Одноимённые зажимы помечают либо точкой, либо звёздочкой.

Если на принципиальной электрической схеме токи ориентированы одинаково относительно одноимённых зажимов катушек, то это согласное включение катушек (рис. 7.3), иначе – встречное (рис.7.4).

согласное

включение

— встречное

включение

Разметка катушек позволяет определить ЭДС самоиндукции в катушках (рис. 7.5).

Правило: Направление ЭДС взаимоиндукции повторяет направление токов относительно одноимённых зажимов. При этом всегда полагают:

; .

Второй закон Кирхгофа:

Правило: Наличие индуктивной связи между ветвями ис токамиучитывается при записи второго закона Кирхгофа путём введения в соответствующие ветви напряжения взаимоиндукции.

в ветвь :

в ветвь :, где

(+) – согласное

(-) – встречное

Последовательное включение магнитосвязанных катушек

Согласное (рис. 7.6):

или , где

.

Встречное (рис. 7.7):

; ;

; ;.

Обозначим ;

Отсюда следует способ определения величины взаимоиндукции.

Метод трёх приборов

Из схемы (рис. 7.8) следует:

; ;.

Аналогично рассчитываем и и полученные результаты подставляем в формулу:

Векторная диаграмма (рис. 7.9):

Баланс мощностей в цепях со взаимной индуктивностью.

Ветвь : , ветвьs: — есть индуктивная связь.

или ;

или .

где: (+) – согласное включение

(-) – встречное включение

Воздушный трансформатор

Электрическая эквивалентная схема воздушного трансформатора изображена на рис. 7.10

-встречное включение

–сопротивление первичной обмотки постоянному току

–сопротивление вторичной обмотки постоянному току

–падение напряжения на нагрузке

(1)

(2)

Уравнениям (2) соответствует схема замещения, в которой первичная и вторичная обмотки связаны не индуктивно, а гальванически (непосредственно).

В полученной схеме разности (рис. 7.11) имеют смысл только при одинаковом числе витков первичной и вторичной обмоток. В противном случае одна из них может оказаться отрицательной, что нереализуемо.

Определим из (1)

; подставим в (1) , тогда:

; .

Тогда входное сопротивление всей цепи со стороны зажимов первичной обмотки: .

Обозначим– вносимое сопротивление из вторичной цепи в первичную. В этом случае схема замещения трансформатора имеет вид (рис. 7.12):

Эта схема необходима для нахождения

Векторная диаграмма трансформатора

Построение диаграммы начинается с.Пусть нагрузка активно-индуктивная (рис.7.13).

Энергетические соотношения в воздушном трансформаторе

Мощность, потребляемая от сети: , часть этой мощности расходуется на нагрев первичной обмотки (потери в меди:).

Часть мощности передаётся электромагнитным путём из первичной обмотки во вторичную см. рис. 7.14.

Часть этой мощности теряется не нагрев вторичной обмотки (рис 7.15), а остаток мощности – это полезная мощность, отдаваемая в нагрузку.

;

Обозначим коэффициент трансформации.

Назовём идеальным трансформатором такой, у которого при любых величинах сопротивления нагрузки отношение :

и называется коэффициентом трансформации идеального трансформатора.

Его входное сопротивление со стороны первичных зажимов:

Отсюда видно, что идеальный трансформатор изменяет сопротивление нагрузки в раз. Это свойство широко используется для согласовывания внутреннего сопротивления генератора и сопротивления нагрузки с целью повышения мощности, отдаваемой в нагрузку.

Отсюда видно, что для приближения реального трансформатора к идеальному необходимо обеспечить максимальную индуктивную связь между обмотками и уменьшить потери на нагрев этих обмоток.

Глава 4. Переходные процессы в трансформаторах § 4.1. Переходные процессы при включении и при внезапном коротком замыкании трансформаторов

При переходе трансформатора из одного уста­новившегося режима в другой возникают переход­ные процессы. Так как каждый установившийся режим характеризуется определенным значением энергии электромагнитных полей, то в течение переходного процесса происходит изменение энергии этих полей. Наибольший практический интерес представляют переходные процессы при включении трансформатора и коротком замыкании на зажимах вторичной обмотки.

Включение трансформатора в сеть. В этом случае результирующий магнитный поток можно рассматривать как сумму трех составляющих:

Ф = Фустпер±Фост (4.1)

где Фуст — магнитный поток установившийся; Фпев — магнитный поток переходного процесса; Фост — магнитный поток остаточного магнетизма, направ­ленный либо согласно с установившимся потоком (знак «+»), либо встречно ему (знак «-»).

Магнитный поток переходного процесса затухающий и постоянен по направлению.

Рис. 4.1. Графики перехода процессов при включении трансформатора (а) и определение тока включения трансформа по кривой намагничивания (б)

Наиболее благоприятный случай включения трансформатора в сеть будет при потоке остаточного магнетизма, направленном встречно установившемуся потоку, и мгновенном значении первичного напряжения u1 = 0. При этом магнитный поток установившийся Фуст будет максимальным, так как он отстает по фазе от напряжения на угол приблизительно 90° (рис. 4.1, а). Магнитный поток Ф становится наибольшим приблизительно через половину периода после включения трансформатора. Если магнитопровод трансформатора не насыщен, то в момент включения трансформатора в первичной обмотке появится намагничивающий ток, пропорциональный магнитному потоку. Если же магнитопровод трансформатора насыщен, то при включении трансформатора намагничивающий ток включения достигает значительной силы, называемой сверхтоком холостого хода. Из построений, сделанных на кривой намагничивания (рис. 4.1, б), видно, что при магнитном потоке, превышающем в два раза установившееся значение Ф = 2Фуст, сверхток холостого хода достигает силы, во много раз превышающей установившееся значение тока х.х. (I1вкл>>I0). При наиболее неблагоприятных условиях сверхток х.х. может в 6—8 раз превысить номинальное значение первичного тока.

Так как длительность переходного процесса невелика и не превышает нескольких периодов переменного тока, то ток включения для трансформатора не опасен. Однако его следует учитывать при регулировке аппаратуры защиты, чтобы в момент включения трансформатора не произошло его неправильного отключения от сети. Бросок тока включения следует также учитывать при наличии в цепи первичной обмотки трансформатора чувствительных измерительных приборов. Во избежание поломки этих приборов нужно до включения трансформатора в сеть шунтировать их токовые обмотки.

Внезапное короткое замыкание на зажимах вторичной обмотки трансформатора. Оно возникает из-за различных неисправностей: механического повреждения изоляции или ее электрического пробоя при перенапряжениях, ошибочных действиях обслуживающего персонала и др. Короткое замыкание — это аварийный режим который может привести к разрушению трансформатора.

При внезапном коротком замыкании на зажимах вторичной обмотки в трансформаторе возникает переходный процесс, сопровождаемый возникновением большого мгновенного тока к. з. iк. Этот ток можно рассматривать как результирующий двух токов установившегося тока iк.уст и тока переходного процесса iк.пер, постоянного по направлению, но убывающего по экспоненциальному закону.

(4.2)

Наиболее неблагоприятные условия к.з. могут быть в момент когда мгновенное значение первичного напряжения равно нулю(u1 = 0). На рис. 4.2 построена кривая тока к.з, iк для этого условия. Ток внезапного к.з. (ударный ток) может достигать двойногозначения установившегося тока к.з. и в 20—40 раз превышать номинальное значение тока.

Рис. 4.2. Графики переходных процессов при внезапном к.з.

Переходный процесс при внезапном к.з. у трансформаторов малой мощности длится не более одного периода, а у трансформаторов большой мощности — 6—7 периодов. Затем трансформатор переходит в режим установившегося к. з., при этом в обмотках протекают токи iк.уст, значения которых хотя и меньше тока iк при переходном процессе, но все же во много раз превышают номи­нальное значение тока. Через несколько секунд срабатывают защитные устройства, отключаю­щие трансформатор от сети. Но несмотря на кратковременность процесса к.з., он представляет собой значительную опасность для обмоток трансформатора: во-первых, чрезмерно большой ток к.з. резко повышает температуру обмотки, что может повредить ее изоляцию; во-вторых, резко увеличиваются электромагнитные силы в обмотках трансформатора.

Значение удельной электромагнитной силы, действующей на витки обмоток, определяют произведением магнитной индукции поля рассеяния В на ток i в витке обмотки:

F = Bi, (4.3)

где Fудельная электромагнитная сила, Н/м.

Но с увеличением тока растет также и индукция поля рассеяния, поэтому сила растет пропорционально квадрату тока (F = i2). Так, если в витке ток i = 100 А и индукция В = 0,1 Тл, то F = 0,1100 = 10 Н/м. Такая си­ла не вызывает заметных деформаций витков обмотки. Но если при внезапном к.з. бросок тока достигнет значения iк, превышающего номинальный ток в 30 раз, то электромагнитная сила возрастет в 900 раз и станет равной 9000 Н/м. Такая сила может вызвать значительные механические разрушения в трансформаторе (рис. 4.3). Все это необходимо учитывать при проектировании трансформаторов и создавать достаточно прочные конструкции обмоток и надежное их крепление на сердечниках.

Рис. 4.3. Разрушение обмоток трансформатора при к.з.

как соединить две первичные и две вторичные обмотки трансформатора

Как соединить две первичные и две вторичные обмотки трансформатора

Типичный понижающий трансформатор с двумя первичными (Primary) и двумя вторичными (Secondary) обмотками, представлен на изображении.

Темная точка обозначает начало  обмотки (идентичную полярность обмоток в данной точке)

Объединяя обмотки первичные между собой, мы тем самым назначим применение трансформатору либо в сети с напряжением переменного тока — 110 -120 vv, либо в сети переменного тока 220 — 240 vv .

Объединяя   вторичные обмотки трансформатора и в зависимости от схемы объединения, мы тем самым определяем какое схемное решение будет использовать ту или иную схемы объединения вторичных обмоток трансформатора.

Манипулируя способом объединения между собой первичных и между собой вторичных обмоток трансформатора мы можем увеличить или уменьшить выходное напряжение или мощность. А также пределы входного напряжения.

Как соединить две первичные и две вторичные обмотки трансформатора

Типовое соединение первичных обмоток трансформатора показано на изображении с лева.

При параллельным (Parallel) соединении, напряжение питания параллельно соединенных первичных обмоток трансформатора останется неизменным в нашем примере 120 v.

В случае же последовательного (Series) соединения, напряжение питания удвоится. При таком соединении мы сможем подать, теперь уже на одну обмотку общую 240v напряжения.

 

Типовое соединение вторичных обмоток трансформатора.

1.Первый вариант — это когда используем как есть . Каждая вторичная обмотка трансформатора запитывает свою нагрузку.

2. Второй вариант — это последовательное соединение вторичных обмоток трансформатора.

В итоге мы получим удвоенное напряжение на выходе 2*12.

Мы получим выходное напряжение 24v при тех же токах, что и в схеме независимой работы вторичных обмоток.

 

 

3. Третий вариант — это схема со средней точкой. Этот вариант применим в схемах  с двуполярным питанием.

4. Четвертый вариант — это параллельное соединение вторичных обмоток трансформатора. Такая схема увеличивает в двое выходной ток. Увеличивает выходную мощность , напряжение остается прежним.

Как соединить две первичные и две вторичные обмотки трансформатора. Трансформаторы с двойными обмотками перевичными и двойными обмотками вторичными, имеют хорошую универсальность, что дает возможность их использования в различных схемных решениях.

Один из таких трансформаторов, с двумя первичными обмотками на напряжение 115 v (2*115v) и двумя вторичными обмотками на напряжение 12 v (2*12v)  номинальной мощностью 8va , предназначенный для использования в цепях переменного тока 50-60gz — Трансформатор 2x115V 2x12V 8VA 50-60hz, смотреть Здесь.

Post Views: 20 586

⚡️Параллельное соединение обмоток трансформатора | radiochipi.ru

На чтение 3 мин. Опубликовано Обновлено

Мне часто задают вопрос: “Можно ли соединять параллельно одинаковые вторичные обмотки силовых трансформаторов?” Вопрос, безусловно, правильный, и на него нужно отвечать. Ныне в устаревшей аппаратуре можно найти большое количество готовых силовых трансформаторов заводского изготовления, которые радиолюбители приспосабливают под свои запросы. Очень часто эти трансформаторы не совсем подходят по параметрам, например, по требуемому току нагрузки.

Но если в трансформаторе имеется несколько одинаковых обмоток, возникает мысль увеличить выходной ток, соединив эти обмотки параллельно. Казалось бы, соединяй выводы одинаковых обмоток между собой и все! Но не все так просто. Во- первых, обмотки нужно соединить синфазно. Для проверки синфазности вторичных обмоток соединяем одни из выводов двух обмоток, включаем трансформатор в сеть и измеряем напряжение между оставшимися свободными концами. Если это напряжение близко к нулю, значит, обмотки соединены противофазно последовательно.

Когда на выводах удвоенное напряжение одной из обмоток, они соединены синфазно последовательно. В первом случае свободные концы обмоток можно соединить вместе и получить параллельное включение обмоток. Во втором случае концы одной из обмоток нужно поменять местами. Однако малейшая неидентичность обмоток способна повлиять на параметры силового трансформатора: его габаритная мощность и КПД при этом уменьшаются, а нагрев обмоток увеличивается.

Фактически соединять параллельно можно обмотки таких трансформаторов, при изготовлении которых специально принимаются меры для получения идентичности обмоток. Например, в паспортах на трансформаторы типа ТПП (трансформаторы питания полупроводниковой аппаратуры) указывается на допустимость параллельного соединения одинаковых обмоток.
Чаще всего радиолюбительские конструкции питаются постоянным током, поэтому проблему соединения обмоток параллельно лучше рассматривать в комплексе с выпрямителем.

Возьмем, скажем, унифицированный трансформатор ТН-60 (трансформатор накальный), имеющий 4 одинаковые вторичные обмотки по 6,3 В (две обмотки имеют еще и отводы на 5 В), рассчитанные каждая на ток 6 А. Для получения токов, вчетверо больших, необходимо соединить обмотки так, как показано на рис.1 (включение обмоток с однополупериодным выпрямлением). Поскольку из-за конструктивного разброса параметров обмотки могут иметь немного отличающиеся напряжения, большее потребление тока (при идентичных диодах) будет от той обмотки, напряжение которой выше.

Диоды позволяют развязать обмотки друг от друга, т.е. теперь каждая обмотка работает только на общую нагрузку, а не на другую обмотку. В результате, мы получили выпрямленное напряжение с четырех обмоток с максимальным током нагрузки 24 А (через каждый диод будет проходить только четвертая часть общего тока нагрузки). Схема двухполупериодного выпрямления приведена на рис.2. Такое соединение выводов обмоток также обеспечивает независимое питание нагрузки. В случае параллельного включения нечетного числа обмоток возможно лишь однополупериодное выпрямление.

Для питания различных конструкций часто применяется напряжение 12 В, поэтому соединение обмоток для такого применения можно выполнить согласно рис. 3. В этом случае через каждый диод будет проходить половина тока нагрузки. Чтобы получить выходное стабилизированное напряжение около 13,8 В, принятое как стандарт в радиопередающей аппаратуре, необходимо применять стабилизаторы с низким падением напряжения на регулирующем элементе [1, 2].

Минимально необходимый перепад напряжений на регулирующем элементе таких стабилизаторов составляет около 0,5 В. Его устанавливают при максимальном токе нагрузки, подбирая емкость конденсатора фильтра после выпрямителя. Чем больше емкость этого конденсатора, тем больший выходной ток можно “отобрать” от стабилизатора при заданном входном напряжении.

ТОЭ Лекции — №35 Трансформатор без стального сердечника

Простейший трансформатор представляет собой совокупность двух обмоток, размещенных на общем магнитопроводе (рис. 35.1, а).

К его первичной обмотке подводится напряжение источника питания, а ко вторичной – подключается нагрузка. Одноименными зажимами обмоток являются их верхние выводы. Ток первичной обмотки I1 создает в магнитопроводе магнитный поток Ф1, который в свою очередь во вторичной обмотке вызывает появление тока I2. Создаваемый им магнитный поток Ф2 в соответствии с принципом Ленца препятствует потоку Ф1, т.е. направлен ему навстречу. Направление тока I2, соответствующее показанному на схеме потоку Ф2, определяем по правилу правой руки.

Мы будем рассматривать трансформатор, не имеющий ферромагнитного сердечника. Такие трансформаторы применяются при высоких частотах и в специальных электроизмерительных устройствах. Катушки с ферромагнитными сердечниками имеют нелинейные характеристики и здесь не рассматриваются.

Электрическая схема замещения трансформатора изображена на рис. 35.1, б. На схеме указаны: R1, X1, R2, X2 и – сопротивления первичной и вторичной обмоток трансформатора, RН и XH – сопротивления нагрузки. Введем обозначения: R22=R2+RH и X22=X2+XH – суммарные активное и реактивное сопротивления вторичной цепи трансформатора, Z1=R1+jX1, Z2=R2+jX2, ZH=RH+jXH, Z22=R22+jX22 – комплексные сопротивления соответствующих участков.

Запишем уравнения второго закона Кирхгофа для первичной и вторичной цепей трансформатора, учитывая, что его обмотки имеют встречное включение:

или

Обозначив I1jXM=E2M, второе уравнение системы (35.1) можно записать так:

E2M=I2Z2+I2Z=

Физически E2M – это ЭДС, которая наводится во вторичной обмотке переменным магнитным полем первичной обмотки. С учетом этого уравнение можно прочитать так: ЭДС, наведенная во вторичной обмотке трансформатора, равна сумме падений напряжений на всех элементах его вторичного контура. Подставляя I2ZH=U2 , получим: U2=E2M-I2Z2 . Смысл последнего уравнения заключается в следующем: напряжение на вторичных зажимах трансформатора меньше эдс, наведенной во вторичной обмотке, на величину падения напряжения на ее сопротивлении.

На рис. 35.2 изображена векторная диаграмма трансформатора. Ее построение начинаем со вторичного тока I2. Ориентируясь на его направление, проводим векторы напряжений на всех элементах вторичной цепи. Их сумма равна ЭДС E2M. Так как в формуле, определяющей ее величину, присутствует множитель j, поворачивающий вектор на четверть оборота, то ток проводим под углом 90° к E2M в сторону отставания. Определив направление I1, строим векторы I1R1 и I1jX1 , которые в сумме с I2jXM – дают U1.

Для анализа работы трансформатора применяют различные эквивалентные схемы. Рассмотрим некоторые из них.

Соединив между собой два нижних зажима трансформатора (режим его работы при этом не изменится) и произведя развязку индуктивных связей, придём к Т-образной эквивалентной схеме (рис. 35.3).

Из второго уравнения системы выразим ток I2 и подставим в первое уравнение той же системы:

Последнему выражению соответствует схема, изображенная на рис. 35.3. Соединенное последовательно с Z1 сопротивление ZBH называется вносимым (из вторичной цепи трансформатора в первичную).

Как следует из формулы, оно равно:

Его активная и реактивная составляющие соответственно равны:

Появление в первичном контуре активного сопротивления, вносимого из первичного контура, физически означает следующее. Энергия, подводимая к трансформатору, потребляется не только сопротивлением R1, но и сопротивлениями вторичной цепи R2 и RH, куда она передается через переменное магнитное поле между обмотками.

Из-за минуса в формуле вносимого реактивного сопротивления общее реактивное сопротивление всей цепи, равное сумме X1 и XBH, оказывается меньше индуктивного сопротивления первичной обмотки.

Это хорошо согласуется со сказанным ранее. При встречном соединении обмоток трансформатора поток Ф2, направленный противоположно потоку Ф1, уменьшает последний, что приводит к уменьшению общего индуктивного сопротивления.

Группа трансформаторов

Vector | Электротехнические примечания и статьи

Введение:

Трехфазный трансформатор состоит из трех наборов первичных обмоток, по одному на каждую фазу, и трех наборов вторичных обмоток, намотанных на один и тот же железный сердечник. Можно использовать отдельные однофазные трансформаторы и подключать их внешне, чтобы получить те же результаты, что и у трехфазного блока.

Первичные обмотки подключаются одним из нескольких способов. Две наиболее распространенные конфигурации — это треугольник, в котором конец полярности одной обмотки соединен с концом неполярности другой, и звезда, в которой все три конца неполярности (или полярности) соединены вместе.Аналогично подключаются вторичные обмотки. Это означает, что первичная и вторичная обмотки трехфазного трансформатора могут быть подключены одинаково (треугольник-треугольник или звезда-звезда) или по-разному (треугольник-звезда или звезда-треугольник).

Важно помнить, что формы сигналов вторичного напряжения совпадают по фазе с формами сигналов первичной обмотки, когда первичная и вторичная обмотки подключены одинаково. Это состояние называется «отсутствие фазового сдвига». Но когда первичная и вторичная обмотки подключены по-разному, формы сигналов вторичного напряжения будут отличаться от соответствующих форм сигналов первичного напряжения на 30 электрических градусов.Это называется сдвигом фазы на 30 градусов. Когда два трансформатора соединены параллельно, их фазовые сдвиги должны быть одинаковыми; в противном случае произойдет короткое замыкание, когда трансформаторы будут под напряжением ».

Основная идея обмотки:

  • Переменное напряжение, приложенное к катушке, будет индуцировать напряжение во второй катушке, где две катушки связаны магнитным путем. Фазовое соотношение двух напряжений зависит от того, каким образом подключаются катушки. Напряжения будут либо синфазными, либо смещенными на 180 градусов
  • Когда в обмотке трехфазного трансформатора используются 3 катушки, существует ряд вариантов. Напряжения катушек могут быть синфазными или смещенными, как указано выше, с катушками, подключенными по схеме звезды или треугольника, и, в случае обмотки звездой, точка звезды (нейтраль) может быть подключена к внешнему выводу или нет.

Шесть способов подключения звездообразной обмотки:


Шесть способов подключения обмотки треугольником:

Полярность:

  • Переменное напряжение, приложенное к катушке, будет индуцировать напряжение во второй катушке, где две катушки связаны магнитным путем.Фазовое соотношение двух напряжений зависит от того, каким образом подключаются катушки. Напряжения будут либо синфазными, либо смещенными на 180 градусов.
  • Когда в обмотке трехфазного трансформатора используются 3 катушки, существует ряд вариантов. Напряжения катушек могут быть синфазными или смещенными, как указано выше, с катушками, подключенными по схеме звезды или треугольника, и, в случае обмотки звездой, точка звезды (нейтраль) может быть подключена к внешнему выводу или нет.

  • Когда пара катушек трансформатора имеет одинаковое направление, чем напряжение, индуцированное в обеих катушках, находится в одном направлении от одного конца к другому.
  • Когда две катушки имеют противоположное направление намотки, чем напряжение, индуцированное в обеих катушках, имеет противоположное направление.

Обозначения присоединения обмотки:

  • Первый символ: для High Voltage : всегда заглавные буквы.
  • D = треугольник, Y = звезда, Z = соединенная звезда, N = нейтраль
  • Второй символ: для Низкое напряжение : Всегда маленькие буквы.
  • d = треугольник, y = звезда, z = соединенная звезда, n = нейтраль.
  • Третий символ: Сдвиг фаз, выраженный в виде часового числа (1,6,11)
  • Пример — Dyn11
    Трансформатор имеет соединенную треугольником первичную обмотку ( D ), вторичную обмотку, соединенную звездой ( y ), с выведенной нейтралью ( n ) и фазовый сдвиг на 30 градусов ( 11 ).
  • Путаница возникает в обозначениях повышающего трансформатора. Как указано в стандарте IEC60076-1, используются последовательные обозначения HV-LV.Например, повышающий трансформатор с соединенной треугольником первичной обмоткой и вторичной соединенной звездой обозначается не как «dY11», а как «Yd11». Цифра 11 указывает на то, что обмотка низкого напряжения опережает HV на 30 градусов.
  • Трансформаторы
  • , изготовленные в соответствии со стандартами ANSI, обычно не имеют векторной группы, указанной на паспортной табличке, а вместо этого дается векторная диаграмма, чтобы показать взаимосвязь между первичной и другими обмотками.

Векторная группа трансформаторов:

  • Обмотки трехфазного трансформатора можно соединить несколькими способами.По соединению обмоток определяется векторная группа трансформатора.
  • Векторная группа трансформатора указана на заводской табличке трансформатора производителем.
    Векторная группа указывает разность фаз между первичной и вторичной сторонами, возникающую из-за данной конфигурации соединения обмоток трансформатора.
  • Определение векторной группы трансформаторов очень важно перед параллельным подключением двух или более трансформаторов.Если два трансформатора с разными векторными группами соединены параллельно, то существует разность фаз между вторичной обмоткой трансформаторов, и между двумя трансформаторами течет большой циркулирующий ток, что очень вредно.

Сдвиг фаз между обмотками ВН и НН:

  • Вектор для обмотки высокого напряжения принимается за опорный вектор. Смещение векторов других обмоток от опорного вектора, с вращением против часовой стрелки, представлено использованием часов часовой фигуры.
  • IS: 2026 (Часть 1V) -1977 дает 26 наборов соединений звезда-звезда, звезда-треугольник и звезда зигзаг, дельта-дельта, дельта-звезда, дельта-зигзаг, зигзагообразная звезда, зигзаг-дельта. Смещение вектора обмотки низкого напряжения изменяется от нуля до -330 ° с шагом -30 °, в зависимости от способа подключения.
  • Вряд ли какая-либо энергосистема предусматривает такое разнообразие соединений. Некоторые из часто используемых соединений со сдвигом фаз 0, -300, -180 ″ и -330 ° (установка часов 0, 1, 6 и 11).
  • Сначала идет символ обмотки высокого напряжения, затем идут символы обмоток в убывающей последовательности напряжения. Например, трансформатор 220/66/11 кВ, соединенный звездой, звездой и треугольником, и векторы обмоток 66 и 11 кВ со сдвигом фаз 0 ° и -330 ° с опорным вектором (220 кВ) будут представлены как Yy0 — Yd11. .
  • Цифры (0, 1, 11 и т. Д.) Относятся к сдвигу фаз между обмотками ВН и НН с использованием обозначения циферблата.Вектор, представляющий обмотку ВН, взят за эталон и установлен на 12 часов. Чередование фаз всегда против часовой стрелки. (Международный принят).
  • Используйте часовой индикатор в качестве индикатора угла сдвига фаз. Поскольку на часах 12 часов, а круг состоит из 360 °, каждый час представляет 30 °. Таким образом, 1 = 30 °, 2 = 60 °, 3 = 90 °, 6 = 180 ° и 12 = 0 ° или 360 °.
  • Минутная стрелка установлена ​​на 12 часов и заменяет линию на нейтраль (иногда мнимую) обмотки ВН.Это положение всегда является ориентиром.
  • Пример:
  • Цифра 0 = 0 °, что вектор LV находится в фазе с вектором HV.
    Цифра 1 = запаздывание на 30 ° (LV отстает от HV на 30 °), поскольку вращение происходит против часовой стрелки.
  • Цифра 11 = запаздывание на 330 ° или опережение на 30 ° (низковольтные выводы высокого напряжения с 30 °)
  • Цифра 5 = запаздывание 150 ° (LV отстает от HV на 150 °)
  • Цифра 6 = запаздывание на 180 ° (LV отстает от HV на 180 °)
  • Когда трансформаторы работают параллельно, важно, чтобы любой фазовый сдвиг был одинаковым для всех.Параллельное соединение обычно происходит, когда трансформаторы расположены в одном месте и подключены к общей шине (сгруппированы) или расположены в разных местах с вторичными клеммами, подключенными через распределительные или передающие цепи, состоящие из кабелей и воздушных линий.

Фазовый сдвиг (град.)

Подключение

0

ГГ0

Dd0

Dz0

30 лаг

ярдов 1

Dy1

Yz1

60 лаг

Dd2

Dz2

120 лаг

Dd4

Dz4

150 лаг

ярдов 5

Dy5

Yz5

180 лаг

Yy6

Dd6

Dz6

150 свинец

ярдов

Dy7

Yz7

120 свинец

Dd8

Dz8

60 выводов

Dd10

Dz10

30 выводов

ярдов 11

Dy11

Yz11

  • Фазные вводы на трехфазном трансформаторе имеют маркировку ABC, UVW или 123 (прописные буквы на стороне ВН, маленькие буквы на стороне НН).Двухобмоточные трехфазные трансформаторы можно разделить на четыре основные категории
Группа Часы ТК
Группа I 0 часов, 0 ° дельта / дельта, звезда / звезда
Группа II 6 часов, 180 ° дельта / дельта, звезда / звезда
III группа 1 час, -30 ° звезда / треугольник, дельта / звезда
Группа IV 11 часов, + 30 ° звезда / треугольник, дельта / звезда
Минус указывает на то, что LV отстает от HV, плюс указывает на LV с опережением HV

Обозначение часов: 0

Обозначение часов: 1

Обозначение часов: 2

Обозначение часов: 4

Обозначение часов: 5

Обозначение часов: 6

Обозначение часов: 7

Обозначение часов: 11

Пункты, которые необходимо учитывать при выборе группы векторов:

  • Векторные группы — это метод МЭК классификации первичной и вторичной обмоток трехфазных трансформаторов.Обмотки могут быть соединены треугольником, звездой или соединены звездой (зигзагом). Полярность обмотки также важна, поскольку изменение полярности соединений в наборе обмоток влияет на фазовый сдвиг между первичной и вторичной обмотками. Векторные группы определяют соединения обмоток и полярность первичной и вторичной обмоток. По векторной группе можно определить фазовый сдвиг между первичной и вторичной обмотками.
  • Векторная группа трансформатора зависит от
    1. Удаление гармоник: Соединение Dy — обмотка y обнуляет 3-ю гармонику, предотвращая ее отражение в треугольнике.
    2. Параллельная работа: Все трансформаторы должны иметь одинаковую векторную группу и полярность обмотки.
    3. Реле замыкания на землю: Трансформатор Dd не имеет нейтрали. чтобы ограничить замыкания на землю в таких системах, мы можем использовать трансформатор с зигзагообразной обмоткой, чтобы создать нейтраль вместе с реле замыкания на землю.
    4. Тип нематериальной нагрузки: системы, имеющие разные типы гармоник и нелинейные типы нагрузок, например нагреватели печи, VFDS и т. д., для этого мы можем использовать конфигурацию Dyn11, Dyn21, Dyn31, при этом 30 град.сдвиги напряжений обнуляют 3-ю гармонику до нуля в системе питания.
    5. Тип применения трансформатора: Обычно для трансформатора экспорта мощности, т.е. сторона генератора подключается треугольником, а сторона нагрузки — звездой. Для экспортных импортных трансформаторов мощности, то есть для целей передачи трансформатора, соединение звездой может быть предпочтительным для некоторых, поскольку это позволяет избежать заземления трансформатора на стороне генератора и, возможно, сэкономить на изоляции нейтрали. Большинство систем работает в этой конфигурации.Может быть менее вредным, чем неправильное использование дельта-системы. Подключение Yd или Dy является стандартным для всех генераторов, подключенных к агрегату.
    6. Существует ряд факторов, связанных с подключениями трансформатора, которые могут быть полезны при проектировании системы и их применении.

Реализация трехфазного двухобмоточного трансформатора с настраиваемыми подключениями обмоток и геометрия сердечника

Блок трехфазного трансформатора с матрицей индуктивности (две обмотки) является трехфазным трансформатор с трехполюсным сердечником и двумя обмотками на фазу.В отличие от блока Three-Phase Transformer (Two Windings), который моделируется тремя отдельными однофазные трансформаторы, этот блок учитывает муфты между обмотками разные фазы. Сердечник и обмотки трансформатора показаны на следующем рисунке.

Эта геометрия сердечника подразумевает, что фазная обмотка 1 соединена со всеми другими фазными обмотками (2 до 6), тогда как в блоке трехфазного трансформатора (две обмотки) (трехфазный трансформатор, использующий три независимых сердечника) обмотка 1 соединяется только с обмоткой 4.

Модель трансформатора

Блок трехфазного трансформатора с матрицей индуктивности (две обмотки) реализует следующие матричные отношения:

R 1 до R 6 представляют собой сопротивления обмоток. В члены самоиндукции L ii и взаимная индуктивность члены L ij вычисляются из отношений напряжений, индуктивная составляющая токов возбуждения холостого хода и реактивных сопротивлений короткого замыкания при номинальная частота.Два набора значений в прямой и нулевой последовательности позволяют расчет 6 диагональных членов и 15 недиагональных членов симметричной индуктивности матрица.

Если для параметра Тип сердечника установлено значение Три однофазные жилы , в модели используются две независимые цепи с (3×3) R и L матрицы. В этом состоянии параметры прямой и нулевой последовательности идентичны. и вы указываете только значения прямой последовательности.

Собственные и взаимные члены матрицы (6×6) L получены из токов возбуждения (один трехфазная обмотка возбуждается, а другая трехфазная обмотка остается разомкнутой) и от реактивные сопротивления короткого замыкания прямой и нулевой последовательности X1 12 и X0 12 измерено с трехфазным обмотка 1 возбуждена, а трехфазная обмотка 2 замкнута накоротко.

При следующих параметрах прямой последовательности:

Q1 1 = Трехфазная реактивная мощность, потребляемая обмотка 1 без нагрузки, когда обмотка 1 возбуждается напряжением прямой последовательности Vnom 1 с разомкнутой обмоткой 2

Q1 2 = Трехфазная реактивная мощность, потребляемая обмотка 2 без нагрузки, когда обмотка 2 возбуждается напряжением прямой последовательности Vном 2 с разомкнутой обмоткой 1

X1 12 = Прямая последовательность реактивное сопротивление короткого замыкания со стороны обмотки 1
, когда обмотка 2 короткозамкнутый

Вном 1 , Vном 2 = Номинальные линейные напряжения обмоток 1 и 2

Собственные и взаимные реактивные сопротивления прямой последовательности определяются как:

Самореактивные сопротивления нулевой последовательности X 0 (1,1), X 0 (2,2), и взаимное реактивное сопротивление Х 0 (1,2) = X 0 (2,1) также вычисляются с использованием аналогичных уравнений.

Расширение следующих двух (2×2) матриц реактивного сопротивления в прямой последовательности и в нулевой последовательности

в матрицу (6×6), выполняется заменой каждого из четырех [ X 1 X 0 ] пар на подматрицу (3×3) вида:

, где собственные и взаимные члены задаются следующим образом:

X s = ( Х 0 + 2 X 1 ) / 3
X м = ( Х 0 X 1 ) / 3

Для моделирования потерь в сердечнике (активная мощность P1 и P0 в положительных и нулевой последовательности), дополнительные шунтирующие сопротивления также подключаются к клеммам одного из трехфазные обмотки.Если выбрана обмотка 1, сопротивления вычисляются как:

Блок учитывает выбранный вами тип подключения, и значок блока выглядит следующим образом: автоматически обновляется. Входной порт с меткой N добавляется к блоку, если вы выберите соединение Y с доступной нейтралью для обмотки 1. Если вы просите доступную нейтраль на обмотке 2, создается дополнительный выходной порт с меткой n2 .

Ток возбуждения в нулевой последовательности

Часто ток возбуждения нулевой последовательности трансформатора с трехполюсным сердечником не соответствует норме. предоставляется производителем.В таком случае можно угадать разумную стоимость, как объяснено ниже.

На следующем рисунке показан трехфазный сердечник с одной трехфазной обмоткой. Только фаза B возбуждается, и напряжение измеряется на фазе A и фазе C. Поток Φ, создаваемый фаза B делится поровну между фазой A и фазой C, так что Φ / 2 течет в конечности A и в лимба C. Следовательно, в данном конкретном случае, если индуктивность рассеяния обмотки B будет равна нулю, напряжение, индуцированное на фазах A и C, будет -к.V B = -V B /2 . Фактически, из-за индуктивности рассеяния

Понимание того, как работают трансформаторы

Как работают трансформаторы

Там Есть много размеров, форм и конфигураций трансформаторов от крошечных до гигантских, подобных тем используется в передаче энергии. Некоторые поставляются с заглушенными проводами, другие — с винтами или лопаточные клеммы, некоторые из которых предназначены для монтажа в печатные платы, другие для привинчивания или крепления вниз.

Трансформаторы состоят из многослойного железного сердечника. с одной или несколькими обмотками провода. Их называют трансформаторами, потому что они трансформируют напряжение и ток с одного уровня на другой. Переменный ток, протекающий через одна катушка проволоки, первичная, индуцирует напряжение в одной или нескольких других катушках проволоки, вторичные катушки. Это изменение напряжения переменного тока, которое вызывает напряжение в другие катушки через изменяющееся магнитное поле.Напряжение постоянного тока, например, от батареи или постоянного тока блок питания не будет работать в трансформаторе. Только переменный ток заставляет трансформатор работать. Магнитное поле течет через железный сердечник. Чем быстрее изменяется напряжение, тем выше частота.

Чем ниже частота, тем больше железа требуется в ядро для эффективной передачи мощности. В США частота сети 60 Герц при номинальном напряжении 110 вольт.Другие страны используют 50 Гц, 220 вольт. Трансформаторы, рассчитанные на 50 Гц, должны быть немного тяжелее, чем трансформаторы, рассчитанные на 60 Гц, потому что у них должно быть больше железа в ядре. Напряжение в сети может немного отличаться и обычно работает от 110 до 120 вольт или от 220 до 240 вольт в зависимости от страны или мощности соединения. В дом в США поступает 220 вольт, но он разделен на две части. 110 В путем заземления центрального ответвителя (см. Раздел конфигурации ниже)

Отношение входного напряжения к выходному напряжению равно к отношению витков провода вокруг сердечника на стороне входа к стороне выхода.А катушка с проводом на входной стороне называется первичной, а на выходной стороне называется вторичный. Может быть несколько первичных и вторичных катушек. Коэффициент текущей ликвидности противоположно соотношению напряжений. Когда выходное напряжение ниже входного Напряжение, выходной ток будет выше входного. Если есть 10 раз больше количества витков провода на первичной обмотке, чем на вторичной, и вы включаете 120 вольт первичный, вы получите 12 вольт на вторичном.Если вытащить 2 ампера из вторичный, вы будете использовать только 0,2 ампера или 200 миллиампер, идущих на первичный.

Трансформаторы могут быть построены так, чтобы у них было одинаковое количество обмоток на первичной и вторичной обмотках или разное количество обмоток на каждой. Если они одинаковы, входное и выходное напряжение одинаковы, а трансформатор просто используется для изоляция, поэтому нет прямого электрического соединения (они подключаются только через общее магнитное поле).Если на первичной стороне больше обмоток, чем на вторичная сторона, то это понижающий трансформатор. Если на корпусе больше обмоток Вторая сторона, то это повышающий трансформатор.

Трансформатор можно использовать в обратном направлении и работают нормально. Например, если у вас есть повышающий трансформатор для преобразования 120 вольт до 240 вольт, так же можно использовать его для понижающего трансформатора, поставив 240 вольт во вторичную сторону, и вы получите 120 вольт на первичной стороне.Фактически, вторичное становится первичным и наоборот.

Номинальная мощность трансформатора

Напряжение измеряется в вольтах, ток измеряется в амперы, а единицей измерения мощности являются ватты. Ватты равны вольтам, умноженным на усилители. В трансформаторе небольшая потеря мощности из-за комбинации сопротивление и реактивность. Реактивное сопротивление аналогично сопротивлению, за исключением того, что это сопротивление переменному току или, более технически, сопротивление изменению при изменении текущий из-за изменения созданного поля.Это тепло ограничивает количество ток или мощность, с которыми может справиться трансформатор. Чем больше ток, тем больше тепла произведено. Когда провода становятся слишком горячими, изоляция разрушается и замыкается. соседние провода, что вызывает большее количество тепла, которое в конечном итоге плавит провода и разрушает трансформатор.

Базовый трансформатор не имеет дополнительных компонентов, поэтому ничего, что могло бы защитить его от перегрузки. Если вы подключили два выходных провода непосредственно вместе, это приведет к короткому замыканию и вызовет слишком большой ток в течет как в первичной, так и в вторичной обмотке, и вы сожжете трансформатор.в таким же образом, если вы используете трансформатор для питания резака для пенопласта с горячей проволокой, и вы используете провод со слишком низким сопротивлением для резака для пенопласта, вы сожжете трансформатор, если у вас нет его защищенного предохранителем или автоматическим выключателем надлежащего номинала. Ты должен убедиться что сопротивление провода, другими словами, калибр или диаметр и длина соответствуют ограничьте величину тока до номинала трансформатора.

Чем выше ток, тем больше должны быть провода которые несут этот ток.Чем больше провода, тем меньше сопротивление и меньше тепла. Мощность, которая изменяется на тепло и теряется, может быть рассчитана как P = I 2 R. Это означает, что если вы удвоите ток, мощность, теряемая на тепло, возрастет в четыре раза. Если трансформатор понижающий, то на выходе будет больше тока. и поэтому провод во вторичной обмотке будет тяжелее первичной. В обратное верно для повышающего трансформатора.

Трансформатор может иметь номинальные значения в амперах, вольт-амперах (ВА) или Ватты (Вт). Для небольших трансформаторов ВА и Ватты одинаковы для всех практических целей. В крупных промышленных трансформаторах задействованы факторы мощности, и они могут будь другим. Если трансформатор рассчитан в амперах, обычно указывается X ампер при X вольт. и рассчитан на выходе или вторичной стороне. Трансформатор на 120 В с выходным напряжением 24 В, рассчитанный на 2 ампера означает, что вы можете безопасно вытащить только 2 ампера из вторичной обмотки.Вы можете найдите номинальную мощность трансформатора, умножив номинальный ток на выходную мощность напряжение так 2 X 24 = 48 Вт.

Если номинал трансформатора выражен в ВА или ваттах, вы можете рассчитать максимально допустимый выходной ток, разделив ВА или ватт на выходную мощность. вольтаж. Таким образом, если трансформатор рассчитан на 48 ВА с выходным напряжением 24 В, допустимое значение выходной ток 48/24 = 2 ампера.

Конфигурации трансформатора

А Трансформатор на 120 вольт с двумя входами и двумя выходами очень прост.Вы подключаетесь два провода на первичной стороне, на стороне 120 В, к розетке и выходному напряжению находится на двух проводах, идущих от вторичной стороны.

Когда трансформатор показан в электронной схеме, это показано как диаграмма, как показано здесь. Параллельные линии представляют ламинированный железный сердечник, изогнутые линии представляют первичную и вторичную обмотки, круги представляют собой окончания, клеммы или короткие провода.

Центральный метчик

Обычная конфигурация — это центральный ответвитель или трансформатор тока. В вторичная сторона имеет три выхода. Средний провод на выходной стороне присоединен к вторичная обмотка, обычно посередине. Если коэффициент намотки 5: 1, то при Вход 120 В, вы получаете выход 24 В на двух внешних проводах, но если вы подключите внешний провод и центральный провод, вы получите 12 вольт, потому что вы используете только половину вторичная обмотка, обеспечивающая соотношение 10: 1.Если трансформатор номинальный при 2 амперах вы все равно можете использовать только 2 ампера, независимо от того, используете ли вы 12 вольт или 24 вольт. Часто центральный отвод заземляется, поэтому у вас есть два источника 12 В, которые можно использовать для после прохождения через преобразователь (выпрямитель и фильтр) сделать + и — 12В постоянного тока.

Двойной выход

В конфигурация двойного выхода аналогична центральному отводу, за исключением того, что вместо подключения провод к центру катушки, катушка разделена на две отдельные катушки с проводами с клеммами или проводами, выходящими с обоих концов обеих катушек, поэтому четыре провода выходят из вторичная сторона вместо трех.

Если трансформатор представляет собой вход 110 В с двумя выходы, вы можете соединить две вторичные катушки последовательно, чтобы получить выход 24 В, или вы можете подключите их параллельно, чтобы получить 12 В. Будьте осторожны, чтобы правильно подключить концы двух вторичных обмоток как в последовательном, так и в параллельном соединении. Если вы поменяете местами соединения, вы получите 0 вольт, потому что два напряжения отменят друг друга.

Если трансформатор рассчитан на 48 ВА, то вы можете использовать до 2 ампер для подключения 24 В, которое не отличается от центрального ответвителя или конфигурация с одним выходом 24 В. Однако при параллельном подключении получается 12 вольт. но удвойте доступный выходной ток, чтобы получить выходной ток 4 ампера. Вы получаете полный выход 48 ВА, тогда как с выходом 12 В для центрального отвода вы можете получить только половину номинального выход или 24ВА.Это преимущество ножниц для резки пенопласта с горячей проволокой, поскольку они имеют более широкую диапазон диаметров и длин проводов в зависимости от того, подключаете ли вы выходы параллельно или сериал. Последовательные и параллельные соединения показаны ниже.

Двойной вход

В трансформатор с двумя входами часто используется, чтобы трансформатор мог использоваться в обоих страны с сетевым напряжением 120 В и сетевым напряжением 240 В.Первичный разделен на две отдельные обмотки с выводами на каждом конце обеих обмоток, так что имеется четыре провода или клеммы на первичной стороне.

Чтобы использовать его с входом 110 В, два основных обмотки подключены параллельно, как показано на левой схеме ниже. Необходимо соблюдать осторожность соедините правильные концы вместе. Если они поменяны местами, поля отменяют друг друга. out, потому что поля, генерируемые каждым разделом первичного элемента, противоположны. Обычно клеммы обозначаются цифрами или буквами, а схема представлена ​​на трансформатора или в прилагаемой таблице данных, показывающей, как должны быть выполнены соединения для 110В и 220В.

Если трансформатор должен быть подключен к сети 220 В, затем две катушки подключаются последовательно, и снова необходимо соблюдать осторожность, чтобы подключить правильные окончания вместе. Параллельные соединения для 110 В и последовательные соединения для 220В показано ниже.

Двойной вход и выход

И, конечно же, у вас может быть как двойной вход, так и двойной выход, поэтому у вас есть четыре провода на входе и четыре провода на выходе, что дает еще большую гибкость к использованию трансформатора.

Некоторые специализированные трансформаторы могут иметь несколько вторичные отводы или несколько вторичных обмоток для обеспечения разных напряжений, и они не должны быть четными числами.Трансформатор может иметь выходное напряжение 3 В, 5 В, 12 В и 24 В для пример.

Автотрансформаторы (Variac)

Автотрансформатор часто называют Variac. что на самом деле является торговой маркой одной компании для их автотрансформатора. Оно имеет постоянное выходное напряжение от нуля до немного выше входного значения. Работает аналогично к потенциометру или реостату, за исключением того, что изменение напряжения связано с изменением поля а не сопротивление.Другое отличие состоит в том, что потенциометр или реостат очень неэффективен, потому что он преобразует ток, протекающий через него, в тепло (Ватты = Амперы X Вольт). Как и во всех трансформаторах, сопротивление низкое, поэтому количество выделяемого тепла намного меньше и намного эффективнее при преобразовании напряжения

Автотрансформатор имеет только одну обмотку, которая обслуживает как первичная, так и вторичная обмотка.Потому что обмотка одна, между входом и выходом нет гальванической развязки, но если изоляция не требуется, то он обеспечивает альтернативу многобмоточным трансформаторам в некоторых ситуации.

Входные провода этого трансформатора подключены к одному конец обмотки, а другой немного дальше от другого конца. Вторичная подключил ту же точку, что и входная сторона, которая находится на конце.Другой вторичный подключение осуществляется с помощью стеклоочистителя, который перемещается по верхней части обмотки, где изоляция была снимается, чтобы стеклоочиститель мог контактировать с обмотками в любой точке на одной поверхности. Стеклоочиститель соединен с ручкой в ​​верхней части автотрансформатора, чтобы человек мог повернуть ручку, чтобы получить желаемое напряжение. Поскольку один первичный провод подключен на пути от конец обмотки, стеклоочиститель может пройти за эту точку и, таким образом, обеспечить более высокое напряжение чем вход, обычно выход 110 В может доходить до 130 В на вторичной стороне.

Поскольку автотрансформатор имеет только одну обмотку, существует только один размер провода, поэтому максимальный входной ток также является максимальным выходным текущий. Если автотрансформатор на 110 В рассчитан на 10 ампер, то максимальная мощность ток 10 ампер вне зависимости от напряжения. Если он указан в ваттах или ВА, то Ампер рассчитывается путем деления Ватт или ВА на номинальное входное напряжение.

Автотрансформатор — это хорошая альтернатива ступени понижающий трансформатор, когда диапазон желаемых напряжений находится на верхнем уровне или во всем диапазоне напряжение необходимо, но становится дороже, если диапазон находится на нижнем уровне, потому что вы имеют много неиспользуемых обмоток. Понижающий трансформатор более экономичен.

Для резки вспененной проволоки автотрансформатор дороже, чем понижающие трансформаторы в большинстве приложений.Если напряжение требуется более 24 вольт, тогда можно рассмотреть возможность использования автотрансформатора.

Фазы и соединение нескольких обмоток

Для простоты я не упомянул фазу, но при соединении двух и более обмоток очень важна фаза. AC ток представляет собой синусоидальную волну, а напряжение изменяется с положительного на отрицательное и обратно в синусоидальный ритм много раз в секунду.Как часто меняется напряжение называется частота и раньше называлась циклами в секунду, но теперь называется Герц (сокращенно Гц). Бытовой ток в США и некоторых других странах составляет 60 Гц, в других странах — 50 Гц. Когда мы говорим о двух волновых формах, таких как две обмотки, соотношение между две синусоидальные волны — это фаза. Если синусоидальные волны совпадают, они находятся в фазе, если положительный пик одной волны совпадает с отрицательным пиком другой волны, две волны 180 не совпадают по фазе.Фаза между одним концом катушки и другим также 180 не в фазе. Когда один конец находится на положительном пике, другой конец будет на положительном пике. противоположный пик. Так как должна быть разница в напряжении между двумя точками для тока, два конца обмотки должны иметь противоположное напряжение в любой момент времени.

Разность фаз между двумя обмотками зависит от направление обмоток и то, как они подключены, так что на электрических схемах точка на один конец обмотки указывает начало этой обмотки.Для простоты, В этой статье я оставил точки на схемах. Однако при соединении двух катушки вместе, очень важно правильно их соединить.

Для последовательного подключения необходимо подключить конец одна обмотка к началу другой обмотки (обмотки для нескольких катушек всегда намотаны в том же направлении). Если подключить начало одной обмотки к концу другая обмотка в последовательном соединении, поля будут отменены, и вы получите ноль выход.Это не повредит трансформатор, но вы не получите выходного напряжения.

Когда соединяя две обмотки параллельно, необходимо соединить начало одной обмотки с пуском другой обмотки и два конца обмоток вместе. Параллельно подключение, подключение проводов в обратном направлении приведет к сгоранию вашего трансформатора , если нет должным образом защищен (соответствующий номинальный ток) предохранителем или автоматическим выключателем.Be очень осторожно при соединении двух катушек вместе.

Дополнительная литература

Это был всего лишь обзор для непрофессионал. Хотя физически трансформатор представляет собой довольно простое устройство, состоящее из нескольких частей, как это работает на самом деле довольно сложно. Я рекомендую отличное качество Рода Эллиота. статей, если вы хотите их лучше понять:

Трансформаторы — Основы (Раздел 1), (Раздел 2), (Раздел 3)

У него также есть много других статей по электронике включая блоки питания.

Трансформатор зигзаг

Применение и преимущества

[ezcol_1third id = ”” class = ”” style = ””] [pageids 1] [/ ezcol_1third]

[ezcol_2third_end id = ”” class = ”” style = ””]

Трансформатор Zig Zag

ZIg Zag трансформатор — это трансформатор специального назначения, используемый в энергосистеме, который также называют «соединенной пусковой обмоткой». Несмотря на то, что этот тип подключения трансформатора бесполезен для преобразования мощности, он имеет множество функций, сочетающих соединения обмоток типа «звезда» и «треугольник».

Зигзагообразные соединения обмоток трансформатора

Трансформатор

Zig Zag имеет шесть катушек, три из которых являются внешними, а три — внутренними, как показано на рисунке. Обмотки внешней катушки называются обмоткой ZIG, а обмотки внутренней катушки соединяются как обмотка ZAG. Зигзагообразная обмотка одной фазы соединена последовательно с загнутой обмоткой другой фазы, поэтому она называется соединенной звездообразной обмоткой, когда две обмотки звездообразной обмотки соединены друг с другом. В каждой фазе две обмотки катушки будут иметь одинаковое количество витков, но они намотаны в противоположных направлениях, чтобы устранить рассогласование напряжений.Ниже приведены соединения катушек зигзагообразной намотки

.

[/ ezcol_2third_end]

1) Внешняя катушка фазы «a» соединена с внутренней катушкой фазы «b»

1) Внешняя катушка фазы «b» соединена с внутренней катушкой фазы «c»

1) Внешняя катушка фазы «c» соединена с внутренней катушкой фазы «c»

Вторые клеммы внутренней катушки соединены вместе и подключены к нейтральной клемме для пропускания компонентов тока нулевой последовательности.

Соединение обмоток разных фаз приводит к сдвигу фаз между зигзагообразной обмоткой и соответствующей линией напряжения нейтрали. Зигзагообразная обмотка имеет на 15,47% больше витков по сравнению с обычными трансформаторами, что обеспечивает такую ​​же величину напряжения. Следовательно, стоимость зигзагообразного трансформатора высока, и его необходимо использовать в некоторых приложениях.

Zig Zag Transformer приложений или использует

Трансформатор заземления

Его можно использовать в качестве заземляющего трансформатора в системе, соединенной треугольником (без нейтрали), или при подключении незаземленного пуска (трехконтактная звезда), когда нейтраль недоступна для заземления.Зигзагообразный трансформатор используется для заземления трансформатора, подключенного по схеме треугольника.

В трансформаторе, подключенном по схеме треугольник, не будет пути к компонентам нулевой последовательности, и для этих компонентов не может быть выполнена защита, которая увеличивает напряжение и нагрев обмоток. Зигзагообразный трансформатор обеспечивает нейтраль для проверки пути к компонентам нулевой последовательности во время замыкания линии на землю и позволяет срабатывать при этом замыкании. При наличии заземленной нейтрали напряжения в исправном состоянии будут повышать линейное напряжение до уровня линейного напряжения, вызывая нагрузку на изоляцию, подключенную к оборудованию.Трансформатор Thug Zig zag не только помогает в защите, но и снижает напряжение в условиях симметричного повреждения.

2) Силовые электронные преобразователи

В силовых электронных преобразователях зигзагообразный трансформатор используется для устранения намагничивающей составляющей постоянного тока, возникающей из-за неправильных углов зажигания. Неправильные углы зажигания силовых электронных компонентов (SCR) могут вносить намагничивающую составляющую постоянного тока, и это устраняется в каждом плече зигзагообразного трансформатора из-за противоположного направления намагничивающей составляющей постоянного тока токов, протекающих в обмотках на той же ветви.

3) Опорный сигнал заземления или трансформатор заземления
Зигзагообразный трансформатор

предлагает путь с низким сопротивлением к компонентам нулевой последовательности в условиях неисправности, поэтому его можно идеально использовать в качестве заземляющего трансформатора с опорным заземлением. Если ток заземления должен быть равен li

ТРАНСФОРМАТОРЫ С ОДНОЗАКОНЧИВАЕМЫМ ВЫХОДОМ

ТРАНСФОРМАТОРЫ С ОДИНОЧНЫМ ВЫХОДОМ

ОДИНОЧНЫЕ ВЫХОДНЫЕ ТРАНСФОРМАТОРЫ

ХАРАКТЕРИСТИКИ Во всех наших односторонних выходных трансформаторах используются слоистые пластины кремнистого железа с ориентированными зернами высшего качества (M6) с низкими потерями.Это обеспечивает минимальные искажения и низкие вносимые потери. Мы наматываем наши односторонние выходные трансформаторы на двухкамерные бобины, что позволяет нам использовать несколько чередующихся секций обмотки, чтобы максимизировать связь без чрезмерной межобмоточной емкости. Все большие типы используют 14 чередующихся первичных / вторичных секций для минимально возможной индуктивности рассеяния и, следовательно, превосходной высокочастотной характеристики. Меньшие типы, где индуктивность рассеяния ниже, мы используем 7 секций в одной камере.Несимметричные выходные трансформаторы используют разрыв в магнитной цепи. Это необходимо для того, чтобы постоянный анодный ток не вызывал насыщения сердечника. Наш процесс проектирования гарантирует, что указанная мощность постоянного и максимального переменного тока на самой низкой частоте, приложенная вместе, не приведет к насыщению сердечника. Зазор настраивается на заводе-изготовителе в процессе настройки.

ОПЦИИ По запросу мы можем поставить 43% отводов экрана (или любой другой процент) для односторонних типов. Все выходные трансформаторы имеют 4 отдельные вторичные обмотки, которые можно настроить на нагрузку 16, 8, 4 или 1 Ом.Схема подключения показана ниже. В качестве альтернативы мы можем предоставить одиночный 4, 8 или 16 Ом или 8 ответвлений на 4 Ом. Также мы можем предоставить две обмотки на 4 Ом, которые можно соединить последовательно на 16 Ом или параллельно на 4 Ом. При заказе не забудьте указать номер типа, тип упаковки и предпочтительный вариант вторичной обмотки и% касания экрана, если требуется. Вторичные обмотки с ответвлениями будут иметь несколько повышенные потери, пониженный высокочастотный отклик и пониженное демпфирование при подключении нагрузки к ответвлению.Это особенно верно, когда используется ответвитель 4 Ом на обмотке 16 Ом. Не забудьте указать предпочтительный вариант, если вы хотите использовать нестандартный дополнительный параметр или% касания экрана. Для получения информации о размере обратите внимание на букву кода размера и см. Параметры упаковки. (Примечание типа «T» недоступно для типов SE)

ИНДИВИДУАЛЬНЫЙ ДИЗАЙН Если мы не укажем нужный вам тип, мы его разработаем. Сообщите нам предлагаемый тип клапана и конфигурацию контура. Мы также производим замену классических усилителей и схем.Цена обычно зависит от размера. Никакой наценки за дизайн нет.

ТРАНСФОРМАТОРЫ С ОДНОСТОРОННИМ ВЫХОДОМ
НАЖМИТЕ ЗДЕСЬ, ЧТОБЫ УЗНАТЬ РАЗМЕРЫ
Предложение
мир
широкий
доставка
ТИП
нажмите
для
spec
Предлагаемый клапан
PRY

Z Ом

постоянного тока мА P

Вт

Самая низкая частота
для
полной мощности
рп

Ом

LF

-3 дБ

ВЧ
(типовой)

-3 дБ

РАЗМЕР Вес

(кг)

Купить SA01 EL84 5k 45 5 40 Гц 20 Гц 60 кГц D 0.9
Купить SA02 EL84 5k 45 5 20 Гц 15 Гц 30 кГц F 1,2
Купить SE04 EL34 3k 90 10 20 Гц 8 Гц 50 кГц N 4.6
Купить SE05 2A3 2.5k 120 15 30 Гц 800 8 Гц 70 кГц L 2,6
Купить SA07 300B / 2A3 2.5k 100 20 20 Гц 700 10 Гц 70 кГц N 4,6
Купить SA08 300B 3.5k 100 20 15 Гц 700 8 Гц 40 кГц 6.4
Купить SE09 845 5k 95 20 30 Гц 1700 8 Гц 70 кГц M 3,4
Купить SA11 211 10k 70 25 20 Гц 3600 8 Гц 50 кГц 6.4
Купить SE18 2 х 211 5k 150 50 30 Гц 1800 15 Гц 40 кГц Q 9,4
Купить SE15 2 x KT88 или EL34 1.5k 180 30 25 Гц 1500 10 Гц 100 кГц N 4,6
Купить SE12 2 x 300B 1,75 тыс. 150 30 20 Гц 350 8 Гц 40 кГц 6.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *