Схемы зарядных устройств для шуруповертов. Схема шуруповерта зарядки


cxema.org - Усовершенствование ЗУ шуруповерта

Усовершенствование ЗУ шуруповерта

    Получил в подарок шуруповерт. Поставил на ночь на зарядку, а утром обнаружил, что блок аккумуляторов нагрелся. Конечно, это не нормально и снизит срок службы аккумуляторов, а также может стать причиной пожара.

Разобрав зарядочник я увидел, что внутри только трансформатор с выпрямителем, а в подставке (charging stand) всего лишь плата со схемой на 1 транзисторе, которая отвечает лишь за срабатывание светодиода, когда в подставку вставлен блок аккумуляторов. Нет никаких узлов контроля заряда и автоотключения. Такой блок питания будет заряжать бесконечно долго и быстро выведет из строя аккумуляторы. Практически у всех бюджетных шуруповертов такая же система заряда, лишь у дорогих приборов с процессорным управлением реализованы умные системы заряда и защиты, как в зарядочнике , так и в аккумуляторном блоке.

Разумеется я решил доработать свой зарядочник, добавив систему стабилизации напряжения и ограничения тока заряда. Блок батарей на 18В собран из 15 никель-кадмиевых аккумуляторов напряжением 1.2В и емкостью 1200мАч. Т.о. для него эффективный ток заряда 120мА. Заряжаться будет долго, но зато безопасно.

Цель доработки – сделать устройство, которое при достижении необходимого конечного напряжения снизит ток заряда до 0. А стабилизация тока позволит заряжать током 120мА независимо от того насколько батарея разряжена. Также добавим индикатор зарядки, который погаснет при окончании процесса. Схема очень простая, всего на 2 микросхемах LM317. Первая включена по схеме стабилизатора тока, вторая стабилизирует выходное напряжение. Т. к. ток будет не более 120мА, то микросхемы на радиатор ставить не придется.

Рассмотрим работу схемы. При зарядке ток протекает через R1 и происходит падение напряжения на нем, достаточное для срабатывания светодиода. По мере заряда ток в цепи уменшится и падение напряжения на R1 будет недостаточно для свечения индикатора. R2 задает максимальный выходной ток. Мощность R2 0.5Вт (можно и 0.25Вт). Для расчета параметров LM317 есть программа. В моем случае, для тока120мА R2 = 10 Ом.

Вторая часть представляет собой пороговый узел, который стабилизирует напряжение. Выходное напряжение задается подбором R3 и R4. Для более точной настройки делитель можно заменить на многооборотный резистор 10кОм. Напряжение на выходе не переделанного устройства было около 26В (проверял на нагрузке 3Вт). Номинальное напряжение батареи 18В (15шт. х 1.2В), а полностью заряженного около 21В. Т.е. на выходе нашего узла надо выставить напряжение в пределах 21В.

Собираем на печатную плату и проверяем. Даже при закороченом выходе ток не более 120мА, причем независимо от напряжения на входе, т.е. ограничение тока работает правильно. Монтируем эту плату в подставку, предварительно убрав из нее штатную. Со штатной платы я взял только светодиод в качестве индикатора зарядки. Измеряем выходное напряжение, оно тоже в пределах установленного.

Теперь подключаем аккумуляторный блок, светодиод загорается. Через несколько часов свет погас, т.е. аккумулятор зарядился. При этом он не нагрелся, и главное, его можно не бояться оставлять на подставке, поскольку устройство автоматически отключается. Могу с уверенностью сказать, что мы улучшили эту зарядку. Можно вдобавок заменить и громоздкий силовой трансформатор на импульсный, но пока как-то недосуг.

Купить

 

 

 

 

 

 

  • < Назад
  • Вперёд >

vip-cxema.org

Схемы зарядных устройств для шуруповертов — studvesna73.ru

Шуруповерт — незаменимый инструмент, но обнаруженный недостаток заставляет подумать о том, чтобы внести кое-какие доработки и улучшить схему его зарядного устройства. Оставив шуруповерт зарядиться на ночь, автор этого видео блогер AKA KASYAN наутро обнаружил нагрев акб непонятного происхождения. Притом нагрев был достаточно серьезным. Это не нормально и резко сокращает срок службы аккумулятора. К тому же опасно с точки зрения пожаробезопасности.

Разобрав зарядное устройство, стало ясно, что внутри простейшая схема из трансформатора и выпрямителя. В док-станции всё было еще хуже. Индикаторный светодиод и небольшая схема на одном транзисторе, которая отвечает только за срабатывание индикатора, когда в док-станцию вставлен акб.Никаких узлов контроля заряда и автоотключения, только блок питания, который будет заряжать бесконечно долго, пока последний не выйдет из строя.

Поиск информации по проблеме привел к выводу, что почти у всех бюджетных шуруповёртов точно такая же система заряда. И лишь у дорогих приборов процессор на управлением реализована умные системы заряда и защит как на самом заряднике, так и в аккумуляторе. Согласитесь, это ненормально. Возможно, по мнению автора ролика, производители специально используют такую систему для того чтобы аккумуляторы быстро выходили из строя. Рыночная экономика, конвейер дураков, маркетинговая тактика и прочие умные и непонятные слова.

Давайте доработаем это устройство, добавив систему стабилизации напряжения и ограничения тока заряда. Аккумулятор на 18 вольт, никель-кадмиевый с емкостью в 1200 миллиампер часов. Эффективный ток заряда для такого акб не более 120 миллиампер. Заряжаться будет долго, но зато безопасно.

Давайте сначала разберемся, что нам даст такая доработка. Зная напряжение заряженного аккумулятора, мы выставим на выходе зарядника именно это напряжение. И когда аккумулятор будет заряжен до нужного уровня, ток заряда снизится до 0. Процесс прекратится, а стабилизация тока позволит заряжать аккумулятор максимальным током не более 120 миллиампер независимо от того, насколько разряжен последний. Иными словами мы автоматизируем процесс заряда, а также добавим индикаторный светодиод, который будет гореть в процессе заряда и погаснет в конце процесса.

Все нужные радиодетали можно приобрести дешево — в этом китайском магазине. Плагин на браузер для экономии в нём: 7%-15% с покупок .Схема узла.

Схема такого узла очень проста и легко реализуема. Затраты всего на 1 доллар. Две микросхемы lm317. Первая включена по схеме стабилизатора тока, вторая стабилизирует выходное напряжение.

Итак, мы знаем, что по схеме будет протекать ток около 120 миллиампер. Это не очень большой ток, поэтому на микросхему не нужно устанавливать теплоотвод. Работает такая система достаточно просто. Во время зарядки образуется падение напряжения на резисторе r1, которого хватит для того, чтобы высвечивался светодиод и по мере заряда ток в цепи будет падать. После некоторой величины падения напряжения на транзисторе будет недостаточное светодиод попросту потухнет. Резистор r2 задает максимальный ток. Его желательно взять на 0,5 ватт. Хотя можно и на 0,25 ватт. По данной ссылке можно скачать программу для расчёта микросхемы 18.

Данный резистор имеет сопротивление около 10 ом, что соответствует зарядному тока 120 миллиампер. Вторая часть представляет из себя пороговый узел. Он стабилизирует напряжение; выходное напряжение задается путем подбора резисторов r3, r4. Для наиболее точной настройки делитель можно заменить на многооборотный резистор на 10 килоом.Напряжение на выходе не переделанного зарядного устройства составляло около 26 вольт, при том, что проверка осуществлялась при 3 ваттный нагрузки. Аккумулятор, как уже выше было сказано, на 18 вольт. Внутри 15 никель-кадмиевых банок на 1,2 вольта. Напряжение полностью заряженного аккумулятора составляет около 20,5 вольт. То есть на выходе нашего узла нам нужно выставить напряжение в пределах 21 вольта.

Теперь проверим собранный блок. Как видно, даже при закороченном выходе ток не будет более 130 миллиампер. И это независимо от напряжения на входе, то есть ограничение тока работает как надо. Монтируем собранную плату в док-станцию. В качестве индикатора окончания заряда поставим родной светодиод док-станции, а плата с транзистором больше не нужна.Выходное напряжение тоже в пределах установленного. Теперь можно подключить аккумулятор. Светодиод загорелся, пошла зарядка, будем дожидаться завершения процесса. В итоге можно с уверенностью сказать что мы однозначно улучшили эту зарядку. Аккумулятор не нагревается, а главное его можно заряжать сколько угодно, поскольку устройство автоматически отключается, когда аккумулятор будет полностью заряжен.

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен. Интересно, что первоначально он был местом для хр.

Эти 10 мелочей мужчина всегда замечает в женщине Думаете, ваш мужчина ничего не смыслит в женской психологии? Это не так. От взгляда любящего вас партнера не укроется ни единая мелочь. И вот 10 вещей.

15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.

10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.

15.02.2015 0 комментариев 4 171

Аккумуляторный шуруповерт давно вошел в нашу повседневную жизнь и стал незаменимым помощником в строительстве и ремонте. Важным фактором для стабильной и долговечной работы шуруповерта является хорошее состояние его аккумулятора. Часто в комплекте с недорогими шуруповертами идут неэффективные зарядные устройства, которые уже после нескольких десятков циклов зарядки/разрядки накладывают на аккумулятор так называемый «эффект памяти».

Давайте рассмотрим схему зарядного устройства для шуруповерта, в которой учтены и исправлены все недостатки.

Электрическая принципиальная схема зарядного устройства шуруповерта

  • В основе схемы лежит контролер ускоренного заряда NiCa/NiMH батарей – MAX731.
  • В правой части электрической схемы резистор R23 отвечает за конечное напряжение разряда: 12,48 В (10,4 В для версии 12 В шуруповерта, 14,56 В для 16,8 В и 15,6 В для 18 В шуруповерта).

Кнопка START DISCHARGE запускает режим дозаряда аккумулятора.

  • После полного разряда батареи, схема зарядного устройства автоматически переходит сначала в режим ускоренного заряда током 1,5 А (1С), с ограничением времени ускоренного заряда 90 мин (это нужно на случай поврежденного аккумулятора, так как расчётное время заряда батареи – 75 мин), контроль за температурой с помощью термовыключателя, вмонтированного в аккумулятор, и контроль конечного напряжения «-ΔV», а далее схема переходит в режим «капельного» заряда батареи.
  • Так как трансформатор от старого зарядного устройства шуруповерта не применим для новой схемы, он был убран.
  • Питание осуществляется внешним блоком питания на 25 В.
  • В случае повторения конструкции, стоит обратить внимание, что напряжение источника питания должно соответствовать 1,9 В на элемент, плюс 2 В для стабильной работы микросхемы. То есть для 12 В шуруповерта – 21 В, для 14,4 В – 25В и для 18 В – 30В. Можно сделать универсальное зарядное устройство с напряжением до 30 В. В таком случае джампера следует вывести наружу и переключать в зависимости от заряжаемой батареи.
  • После завершения работы шуруповерта, аккумулятор вставляется в зарядное устройство, далее нажимается кнопка «START» и выполняется доразрядка батареи в течении 15-30 минут. Это определенно говорит о том, что даже после интенсивной работы аккумулятор ещё сохраняет заряд. После окончательной разрядки, зарядное устройство переключается на ускоренный заряд (этот процесс сопровождается свечением красного светодиода).
  • Самым главным преимуществом данной электрической принципиальной схемы является – продление срока службы аккумулятора шуруповерта. А так как запасные аккумуляторы продают далеко не для всех шуруповертов, это позволит сохранить работоспособность вашего инструмента на долгие годы.
  • На боковых выступах аккумулятора, на той части, которая вставляется в ручку шуруповерта и зарядное устройство, находятся контактные клеммы, обозначенные соответственно «+» и «-». На торце находится дополнительный контакт к которому подключён терморазмыкатель.
  • Подключение аккумуляторной батареи к зарядному устройству производится согласно вышеприведённой электрической схемы.
  • Печатная плата схемы зарядного устройства для шуруповерта будет выглядеть примерно так:

    Печатная плата зарядного устройства Обратная сторона печатной платы

    В таблице ниже представлен набор нужных элементов для построения схемы ЗУ.

    Схема, устройство, ремонт

    Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием. Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол9quot;.

    Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

    Печатная плата зарядного устройства (CDQ-F06K1).

    Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь .

    Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

    Основа схемы управления — микросхема HCF4060BE. которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда — около 60 минут.

    При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

    Микросхема HCF4060BE запитывается от стабилитрона VD6 — 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

    Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск9quot; микросхема U1 HCF4060BE обесточена — отключена от источника питания. При нажатии кнопки «Пуск9quot; напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

    Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012. которым она управляет.

    Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007 ) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

    Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

    Что будет после того, когда контакты кнопки «Пуск9quot; разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007 ) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

    Сменный аккумулятор.

    Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

    На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

    Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

    Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

    Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

    Алгоритм работы схемы довольно прост.

    При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

    При нажатии кнопки «Пуск9quot; электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 — 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

    После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

    Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

    Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован .

    Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

    На графике показано, как во время заряда меняется температура элемента (temperature ), напряжение на его выводах (voltage ) и относительное давление (relative pressure ).

    Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -&#&16;V. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

    Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

    Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

    Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством. например, таким, как Turnigy Accucell 6.

    Возможные неполадки зарядного устройства.

    Со временем из-за износа и влажности кнопка SK1 «Пуск9quot; начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

    Также могут иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE).

    Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

    Схема достаточно примитивна и не вызывает проблем в диагностике неисправности и ремонте даже у начинающих радиолюбителей .

    Часто родное зарядное устройство, входящее в комплект шуруповерта, работает медленно, долго заряжая аккумулятор. Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Несмотря на то, что в комплект входит обычно два аккумулятора (один установлен в рукоятку инструмента и в работе, а другой подключен к зарядному устройству и находится в процессе зарядки), часто владельцы не могут приспособиться к рабочему циклу аккумуляторов. Тогда имеет смысл изготовить зарядное устройство своими руками и зарядка станет удобнее.

    Виды батарей

    Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными. Никель-кадмиевые (Ni-Cd) батареи являются очень хорошим источником энергии, способны отдавать большую мощность. Однако, по экологическим причинам их производство прекращено и они будут встречаться все реже и реже. Сейчас всюду их вытеснили литий-ионные аккумуляторы.

    Сернокислотные (Pb) свинцовые гелевые аккумуляторы имеют неплохие характеристики, но утяжеляют инструмент и поэтому не пользуются особой популярностью, несмотря на относительную дешевизну. Поскольку они гелевые (раствор серной кислоты загущается силикатом натрия), то никаких пробок в них нет, электролит из них не вытекает и ими можно пользоваться в любом положении. (Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.)

    Литий-ионные аккумуляторы (Li-ion) являются сейчас наиболее перспективными и продвигаемыми в технике и на рынке. Их особенностью является полная герметичность ячейки. Они имеют весьма высокую удельную мощность, безопасны в обращении (благодаря встроенному контроллеру заряда!), выгодно утилизируются, являются наиболее экологически чистыми, имеют малый вес. В шуруповертах в настоящее время применяются очень часто.

    Режимы заряда

    Номинальное напряжение Ni-Cd ячейки 1.2 В. Никель-кадмиевый аккумулятор заряжается током от 0.1 до 1.0 номинальной емкости. Это означает, что аккумулятор емкостью 5 амперчасов можно заряжать током от 0.5 до 5 А.

    Заряд сернокислотных аккумуляторов хорошо знаком всем людям, держащим в руках шуруповерт, ведь практически каждый их них еще и автолюбитель. Номинальное напряжение ячейки Pb-PbO2 составляет 2.0 В, а ток зарядки свинцового сернокислотного аккумулятора всегда 0.1 C (доля тока от номинальной емкости, см. выше).

    Литий-ионная ячейка имеет номинальное напряжение 3.3 В. Ток заряда литий-ионного аккумулятора, 0.1 C. При комнатной температуре этот ток можно плавно повышать до 1.0 С – это быстрый заряд. Однако, это годится только для тех батарей, которые не были переразряжены. При заряде литий-ионных батарей следует точно соблюдать напряжение. Заряд производится до 4.2 В точно. Превышение резко снижает срок службы, понижение – уменьшает емкость. При зарядке следует следить за температурой. Теплый аккумулятор следует либо ограничить током до 0.1 С, либо отключить до остывания.

    ВНИМАНИЕ! При перегреве литий-ионного аккумулятора при зарядке свыше 60 градусов Цельсия возможен его взрыв и возгорание! Не следует слишком полагаться на встроенную электронику безопасности (контроллер заряда).

    При заряде литиевой батареи, контрольное напряжение (напряжение окончания заряда) образует приблизительный ряд (точные напряжения зависят от конкретной технологии и указаны в паспорте на батарею и на ее корпусе):

    Напряжение заряда следует контролировать мультиметром или схемой с компаратором напряжения, настроенным точно на применяемую батарею. Но для “электронщиков начального уровня” реально можно предложить только простую и надежную схему, описанную в следующем разделе.

    Зарядное устройство + (Видео)

    Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных. Шуруповерты питаются от аккумуляторов с разными напряжениями 12 вольт или 18 вольт. Это неважно, главный параметр зарядного устройства для аккумуляторов – ток заряда. Напряжение зарядного устройства при отключенной нагрузке всегда выше номинального, оно падает до нормы при подключении батареи при заряде. В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания.

    Зарядное устройство представляет собой генератор тока на мощном составном транзисторе VT2, который питается от выпрямительного мостика, подключенного к понижающему трансформатору с достаточным выходным напряжением (см. таблицу в предыдущем разделе).

    Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Иначе он может сгореть. Ток заряда выставляется регулировкой резистора R1 при подключенном аккумуляторе. Он остается постоянным в процессе заряда (тем постоянней, чем выше напряжение от трансформатора. Примечание: напряжение от трансформатора не должно превышать 27 В).

    Резистор R3 (не менее 2 Вт 1 Ом) ограничивает максимальный ток, а светодиод VD6 горит, пока идет заряд. К концу заряда, свечение светодиода уменьшается и он гаснет. Тем не менее, не забывайте про точный контроль напряжения литий-ионных аккумуляторов и их температуру!

    Все детали в описанной схеме монтируются на печатной плате из фольгированного текстолита. Вместо диодов, указанных в схеме, можно взять русские диоды КД202 или Д242, они довольно доступны в старом электронном ломе. Располагать детали надо так, чтобы на плате оказалось как можно меньше пересечений, в идеале ни одного. Не следует увлекаться высокой плотностью монтажа, ведь вы собираете не смартфон. Распаивать детали вам будет значительно легче, если между ними останется по 3-5 мм.

    Транзистор должен быть установлен на теплоотводе достаточной пощади (20-50 см.кв). Все части зарядного устройства лучше всего смонтировать в удобный самодельный корпус. Это будет самым практичным решением, в работе вам ничто не будет мешать. Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Поэтому лучше сделать так: взять старое или неисправное зарядное устройство у знакомых, подходящее к вашей модели аккумулятора, и подвергнуть его переделке.

    • Вскрыть корпус старого зарядного устройства.
    • Удалить из него всю бывшую начинку.
    • Подобрать следующие радиоэлементы:

    studvesna73.ru

    Схема зарядного устройства для шуруповерта

    15.02.2015 5 401

    Аккумуляторный шуруповерт давно вошел в нашу повседневную жизнь и стал незаменимым помощником в строительстве и ремонте. Важным фактором для стабильной и долговечной работы шуруповерта является хорошее состояние его аккумулятора. Часто в комплекте с недорогими шуруповертами идут неэффективные зарядные устройства, которые уже после нескольких десятков циклов зарядки/разрядки накладывают на аккумулятор так называемый «эффект памяти».

    Давайте рассмотрим схему зарядного устройства для шуруповерта, в которой учтены и исправлены все недостатки.

    Электрическая принципиальная схема зарядного устройства шуруповерта

    Печатная плата схемы зарядного устройства для шуруповерта будет выглядеть примерно так:

    Печатная плата зарядного устройстваОбратная сторона печатной платы

    В таблице ниже представлен набор нужных элементов для построения схемы ЗУ.

    Название Тип Количество, шт
    Микросхема MAX713 1
    Микросхема TL431ACLPR, TO92 1
    Микросхема LM317L 1
    Транзистор KN2222(2N2222A) 4
    Транзистор 2N2907 2
    Транзистор IRFR9024(IRFR5305) 1
    Индуктивность CDRh227 220мкГн 2А 1
    Светодиоды 3
    Диоды 1N5818 2
    Резистор постоянный 20
    Резистор подстроечный 1
    Резистор разрядный 5Вт 47 Ом 1
    Конденсаторы 8
    Предварительная сборка ЗУ

    Принцип работы готовой схемы зарядного устройства

    Вставляем аккумулятор шуруповерта в зарядное устройство и нажимаем кнопку «Start Discharge», после чего начинается доразряд батареи до 1,04 В, при этом загорается синий светодиод.После полного доразряда зарядное устройство переходит в режим ускоренного заряда, при этом загорается красный светодиод, а зелёный показывает питание.

    Если красный светодиод погас – значит, зарядное устройство перешло в режим «капельной зарядки».

    propowertools.ru


    Смотрите также

    .