Мотор-компрессор. Компрессор мотор


компрессор - это... Что такое Мотор-компрессор?

Мотор-компрессор (на схемах часто обозначается МК) — агрегат, совмещающий в себе приводной электрический двигатель и компрессор (в основном поршневой, редко винтовой). Активно применяется на электротранспорте (электровозы, электропоезда, трамвай, вагоны метрополитена, троллейбус), где служит для выработки сжатого воздуха.

Также мотор-компрессоры используются и в быту, в частности они являются «сердцем» холодильников (см.: Холодильный компрессор) и кондиционеров, в которых перекачивают хладагент.

Мотор-компрессоры на ЭПС

Мотор-компрессор ЭК-4Б (вид сверху) вагонов метрополитена 81-717/714

Мотор-компрессор является одной из основных вспомогательных машин на электрическом подвижном составе (ЭПС), так как создаваемый им сжатый воздух используется прежде всего в тормозной системе и для привода электропневматических контакторов, а на пассажирском моторвагонном подвижном составе пневматическим приводом оборудованы и двери для выхода из вагонов.

Характеризуют мотор-компрессоры по номинальной подаче воздуха, давлением нагнетания, потребляемой мощностью, напряжению и роду (постоянный или переменный) тока питания, КПД, мощности а также типом двигателя.

Электродвигатели мотор-компрессоров как правило двух типов:
  • постоянного тока с последовательным возбуждением — применяется на ЭПС постоянного тока либо двойного питания;
  • асинхронный переменного тока — применяется на ЭПС переменного тока, редко на электропоездах постоянного тока (ЭР22, ЭТ2)

Значительное отличие у мотор-компрессоров применяемых на локомотивах и МВПС, что связано со спецификой их работы. Так на электровозе один-два компрессора должны снабжать воздухом систему со значительным объёмом (ввиду высокой длины поезда), поэтому данные мотор-компрессора характеризует высокая производительность и мощность. Например, на электровозе ЧС8 применены компрессоры K3-Lok2 производительностью 2,9 м³/мин и мощностью 25 кВт. В отличие от электровозов, на электропоездах имеются несколько компрессоров (на вагонах метрополитена — на каждом вагоне, либо 2 компрессора на 3 вагона; на пригородных поездах — 1 компрессор на 2 вагона), которые распределены по длине относительно короткого состава, поэтому здесь мотор-компрессора имеют меньшую мощность и производительность. Например, на электропоездах ЭР1 и ЭР2 применяются мотор-компрессоры ЭК-7 производительностью 0,63 м³/мин и мощностью 5 кВт. Помимо этого, если на локомотивах основное оборудование находится в кузове, то на пассажирском моторвагонном подвижном составе его уже приходится размещать под кузовом вагона, так как это необходимо для освобождения внутрикузовного пространства с целью увеличения площади пассажирского салона, хотя и накладывает серъёзные ограничения на размеры подвагонного электрооборудования. Особенно важно решить проблему с подвагонным размещением вспомогательных машин на пригородных электропоездах постоянного тока на напряжение 3000 В, так как двигатели на такое напряжение имеют значительные габариты (в основном обусловлено высокой толщиной межвитковой изоляции и ограничениями по межламельному напряжению на коллекторе). Применение такого электродвигателя в качестве привода компрессора нерационально, ввиду его громоздкости, поэтому конструкторы в мотор-компрессорах стали применять электродвигатели на меньшее напряжение. Собственно, именно из-за необходимости питания мотор-компрессоров меньшим напряжением и были созданы делители напряжения, которые преобразуют поступающие 3000 В от контактной сети в 1500 В, которые уже питают двигатель компрессора. Впоследствии на электропоездах постоянного тока конструкторы отказались от применения мотор-компрессоров с двигателями постоянного тока и заменили их привод на трёхфазные двигатели переменного тока, питание которым поступает от преобразователя (на советских/российских электропоездах — типа 1ПВ, постоянный 3000 В → 3-фазный переменный 380 В).

На вагонах метрополитена и трамвая для привода мотор-компрессора нередко применяется двигатель, выполненный на меньшее напряжение, чем напряжение питания. В этом случае двигатели компрессоров подключаются к сети через резистор.

См. также

Литература

  • Мотор-компрессор // Железнодорожный транспорт: Энциклопедия / Гл. ред. Н. С. Конарев. — М.: Большая Российская энциклопедия, 1994. — С. 250. — ISBN 5-85270-115-7

dic.academic.ru

Электрооборудование мотор-компрессоров. Двигатели ДХ и ФГ. :: АвтоМотоГараж

Поводом к написанию этой статьи послужил один комментарий с вопросом и попавший ко мне неисправный агрегат от холодильника. Коментарий: После 10-15 секунд работы двигатель отключается,что может стать причиной?

Во времена СССР в производстве холодильников в основном использовались два типа мотор-компрессоров: ДХ и ФГ-0,100 (LS-08B). Зарубежные типы компрессоров здесь не рассматриваю, так как они не часто попадают в руки к самодельщикам. Ниже рассмотрим мотор-компрессор со стороны электротехники. Но сперва вкратце об устройстве компрессоров ДХ и ФГ и их отличиях.

Мотор-компрессоры ДХ и ФГ-0,100 различаются по подвеске. ДХ компрессор и двигатель закреплены жесткое кожухе, подвешенном на раме с пружинами. Компрессор и двигатель мотор-компрессора ФГ-0,100 подвешены на пружинах внутри кожуха, а кожух жестко закреплен на раме. По внутренней конструкции компрессорные установки тоже имеются различия.

Мотор-компрессор ДХ.

Дополнительные фото и чертежи можно посмотреть тут: Мини - компрессор из холодильника (теория).

dx_001 

Компрессор поршневой, одноцилиндровый, с вертикально расположенной осью цилиндра. Возвратно-поступательное движение поршня в цилиндре осуществляется при помощи кривошипно-шатунного механизма. Смазка трущихся частей принудительная при помощи масляного насоса ротационного типа. Компрессор приводится в действие электродвигателем типа ДХМ. Двигатель однофазный, асинхронный переменного тока для работы от сети напряжением 220 или 127 В 50 Гц. Номинальная частота вращения ротора 1500 об/мин. Ротор напрессован непосредственно на коренной шейке коленчатого вала, статор закреплен в кожухе мотор-компрессора. Герметичные проходные контакты, через которые осуществляется электропитание двигателя, впаяны в одну из крышек кожура. Кожух мотор-компрессора ДХ цилиндрической формы состоит из трубы, закрытой с торцов наглухо приваренными к ней крышками. Подвеска кожуха мотор-компрессора пружинная.

Мотор-компрессор ФГ-1,100 (LS-08B). Дополнительные фото можно посмотреть тут: Устройство компрессора ФГ-0,100.

compressor_refrigerator_fg-0.100_000 

Компрессор поршневой, одноцилиндровый, с горизонтально расположенной осью цилиндра. Поршень перемещается в цилиндре при помощи кулисного механизма. Смазка трущихся частей осуществляется под действием центробежной силы через наклонно просверленное отверстие в нижнем торце коренной шейки вала. Двигатель компрессора однофазный, асинхронный переменного тока, для работы от сети напряжением 220 В. Номинальная частота вращения ротора 3000 об/мин. Статор закреплен на корпусе компрессора, который опирается на три пружины, симметрично расположенные в кожухе по окружности. Кожух мотор-компрессора ФГ-0,100 имеет форму горшка, закрытого приваренной крышкой. Три штампованные площадки на крышке, расположенные над опорами мотор-компрессора, ограничивают его перемещение внутри кожуха и препятствуют соскакиванию мотор-компрессора с пружин подвески.

Мотор-компрессор ФГ-0,100 (LS-08B) выгодно отличается от мотор-компрессора ДХ меньшим уровнем шума при работе, а также своей компактностью. Первому благоприятствует внутренняя подвеска, второму - применение высокооборотного двигателя.

Электродвигатель компрессора.

Статор является неподвижной частью двигателя. Он состоит из отдельных листов электротехнической стали, собранных в пакет. Вырезы, имеющиеся на внутреннем диаметре листа, необходимы для укладки обмоток. Обмоток две — рабочая и пусковая. Пусковая обмотка рассчитана на кратковременное включение лишь при запуске двигателя. Для повышения сопротивления ее выполняют из провода меньшего сечения, чем рабочую.

Для обмоток применяют провод марки ПЭВ-2 с высокопрочной лаковой (випифлекс) изоляцией, не растворяющейся под действием фреона и масла. Пропитывание обмоток лаками не допускается во избежание их растворения фреоном, а также отслаивания лака.

Витки обмоток в секциях скрепляют льняными нитками. Одни из концов рабочей и пусковой обмоток соединяют. Таким образом, обмотки имеют три выводных конца — рабочий, пусковой и общий конец обеих обмоток. 

motor_dx_winding 

Для выводных проводников используют многожильные провода в хлопчатобумажном чулке с вплетенной цветной ниткой для отличия концов обмоток.

Пускозащитное реле

Обычно пусковое и защитное реле совмещено в одном корпусе. Пусковые реле электромагнитные, с соленоидными катушками, которые включены в цепь рабочей обмотки двигателя. В нормальном состоянии контакты пускового реле разомкнуты и замыкаются в зависимости от перемещения сердечника в магнитном поле катушки. Защитные реле токовые, с нагревательными элементами и биметаллическими пластинками, деформирующимися от нагрева током и воздействующими на контакты. Контакты защитного реле размыкающие.

Пусковое реле работает следующим образом. При включении холодильного агрегата в сеть по рабочей обмотке двигателя и катушке пускового реле, а также через замкнутую цепь защитного реле проходит большой ток короткого замыкания (ротор неподвижен). В результате возникающего магнитного поля якорь втягивается в катушку соленоида и через пружинку увлекает стержень вместе с планкой контактов, которые замыкаются с контактами. При замыкании контактов включается пусковая обмотка двигателя, в результате чего начинается разгон ротора. При вращающемся роторе ток снижается, напряженность магнитного поля катушки слабеет, якорь опускается своей массой и контакты размыкаются. Двигатель работает с включенной в сеть рабочей обмоткой.

dx_starter 

Принципиальное устройство и схема включения пускового реле:

1 – соленоидная катушка: 2 - якорь; 3 - подвижные контакты;  4 - неподвижные контакты; 5 - стержень; 6 – пружина; РО – рабочая обмотка; ПО - пусковая обмотка; ПР - пусковое реле

Работа защитного реле заключается в следующем. При включении холодильника в сеть, когда ротор двигателя еще неподвижен, по замкнутой цепи защитного реле через нагревательный элемент и биметаллическую пластинку проходит большой ток короткого замыкания. При нормальном запуске двигателя и быстром разгоне ротора биметаллическая пластинка не успевает нагреться настолько, чтобы ее изгиб привел к размыканию контактов. Цепь защитного реле остается также замкнутой и при нормальном рабочем токе. Однако в случае повышения тока нагрев биметаллической пластинки приведет к размыканию контактов и отключению двигателя от сети.

dx_zashita 

Принципиальное устройство и схема включения защитного реле:

1 - нагревательный элемент; 2 - биметаллическая пластина; 3 - подвижный контакт; 4 - неподвижный контакт; РО — рабочая обмотка; ПО — пусковая обмотка; ЗР — защитное реле

Пускозащитное реле РТК-Х применяется для мотор-компрессоров с двигателями ДХМ-5 (220 В). По своим токовым характеристикам реле РТК-Х, взаимозаменяемо с реле РТП-1 для тех же двигателей. Оно монтируется на проходных контактах компрессорной установки. Пусковое реле РТХ-Х отличается от реле РТП-1 наличием двойного разрыва контактов, расположением контактов над соленоидной катушкой, а также меньшей массой сердечника, что способствует его бесшумному перемещению при размыкании контактов. Устройство защитного реле РТК-Х на 220 В отличается наличием дополнительного нагревательного элемента, благодаря чему улучшена защита пусковой обмотки двигателя и мотора в целом.

ptk-x_shema 

Устройство и схема включения пускозащитного реле РТК-Х: 1 - соленоидная катушка; 2 - якорь; 3 - стержень, 4 - планка подвижных контактов пускового реле; 5 - подвижные контакты; 6 - пружин а; 7 - неподвижные контакты пускового реле; 8 - нагревательный элемент цепи пусковой обмотки; 9 - нагревательный элемент цепи рабочей обмотки; 10 - подвижный контакт защитного реле; 11 - неподвижный контакт защитного реле; 12 - биметаллическая пластинка; 13 - упор контактодержателя; 14 – контактодержатель

Ниже фотографии реле РТК-Х выпуска времён СССР и Россия (чёрный и белый соответственно).

ptk-x_01 ptk-x_02 ptk-x_03 

ptk-x_04 ptk-x_05 

Далее фотографии реле РТП-1:

rtp-1_01 rtp-1_02 

rtp-1_03 rtp-1_04 rtp-1_05 

Определение выводных концов обмоток

Расположение проходных контактов на кожухе и присоединение к ним выводных концов рабочей и пусковой обмоток у разных мотор-компрессоров разное.

Присоединение выводных концов обмоток можно определить при помощи тестера (или батареи 3336Л и лампочки на 4,5 В). Выводные концы обмоток определяют включением какого-либо из перечисленных приборов попеременно между каждой парой проходных контактов. При этом стрелка прибора будет отклоняться по-разному, в зависимости от сопротивления обмотки, включенной между конкретной парой контактов. При проверке выводных концов лампочкой, будет заметна разница по ее яркости.

Практическая часть. Необходимо демонтировать реле. Нарисовать схему расположения контактов на корпусе агрегата и обозначить каждый контакт условным порядковым номером. Далее проверить попеременно каждую пару проходных контактов и записать результаты в табличку. К паре контактов, между которыми будет наибольшее сопротивление (наименьшая сила тока или наименьшая яркость лампочки), присоединены выводные концы рабочей и пусковой обмоток, следовательно, оставшийся контакт - общий выводной конец обеих обмоток. Определив присоединение общего выводного конца обмоток, следует сравнить результаты проверки между этим контактом и остальными. Наименьшее сопротивление (наибольшая сила тока, наибольшая яркость лампочки) будет указывать на контакт, к которому подключен выводной конец рабочей обмотки, и следовательно, к оставшемуся контакту - выводной конец пусковой обмотки.

motor_dx_winding_06 

В моём случае получилось следующее. Эксперимент проводил на трёх одинаковых мотор компрессорах типа ДХ. Обозначил контакты условными номерами 1, 2 и 3, сделал замеры и записал полученные результаты в табличку:

motor_dx_winding_05 

Из полученных данных следует, что к проходному контакту 2 присоединен общий конец обмоток, к контакту 3 - конец рабочей обмотки и к контакту 1 - конец пусковой обмотки:

motor_dx_winding_07 

Теперь по подробнее о третьем мотор компрессоре (из-за которого и пришлось написать эту статью). Ситуация была следующей. При подаче питания на компрессор, он включался. Поработав не продолжительное время, около тридцати – сорока секунд (максимум минуту) выключался. И включение происходило только после того как, что-то щёлкнет в пусковом реле. Если запустить компрессор и через десять секунд выключить, а после выключения включить повторно, то уже при старте двигателя в блоке реле произойдёт щелчок и мотор выключится, а далее всё заново. После того как были сделаны измерения сопротивления обмоток электродвигателя стало ясно что рабочая обмотка имеет коротко замкнутые витки. Щелчки которые раздавался при остановки двигателя и его старте, были срабатывания реле защиты. 

Третий мотор в утиль ...

Всем удачи!!!

automotogarage.ru

Мотор-компрессор — Википедия Переиздание // WIKI 2

Мотор-компрессор (на схемах часто обозначается МК) — агрегат, совмещающий в себе приводной электрический двигатель и компрессор (в основном поршневой, редко винтовой). Активно применяется на электротранспорте (электровозы, электропоезда, трамвай, вагоны метрополитена, троллейбус), где служит для выработки сжатого воздуха.

Также мотор-компрессоры используются и в быту, в частности они являются «сердцем» холодильников (см.: Холодильный компрессор) и кондиционеров, в которых перекачивают хладагент.

Мотор-компрессоры на ЭПС

Мотор-компрессор ЭК-4Б (вид сверху) вагонов метрополитена 81-717/714 Мотор-компрессор ЭК-4Б (вид сверху) вагонов метрополитена 81-717/714

Мотор-компрессор является одной из основных вспомогательных машин на электрическом подвижном составе (ЭПС), так как создаваемый им сжатый воздух используется прежде всего в тормозной системе и для привода электропневматических контакторов, а на пассажирском моторвагонном подвижном составе пневматическим приводом оборудованы и двери для выхода из вагонов.

Характеризуют мотор-компрессоры по номинальной подаче воздуха, давлением нагнетания, потребляемой мощностью, напряжению и роду (постоянный или переменный) тока питания, КПД, мощности а также типом двигателя. Электродвигатели мотор-компрессоров как правило двух типов:

  • постоянного тока с последовательным возбуждением — применяется на ЭПС постоянного тока либо двойного питания;
  • асинхронный переменного тока — применяется на ЭПС переменного тока, редко на электропоездах постоянного тока (ЭР22, ЭТ2)

Значительное отличие у мотор-компрессоров применяемых на локомотивах и МВПС, что связано со спецификой их работы. Так на электровозе один-два компрессора должны снабжать воздухом систему со значительным объёмом (ввиду высокой длины поезда), поэтому данные мотор-компрессора характеризует высокая производительность и мощность. Например, на электровозе ЧС8 применены компрессоры K3-Lok2 производительностью 2,9 м³/мин и мощностью 25 кВт. В отличие от электровозов, на электропоездах имеются несколько компрессоров (на вагонах метрополитена — на каждом вагоне, либо 2 компрессора на 3 вагона; на пригородных поездах — 1 компрессор на 2 вагона), которые распределены по длине относительно короткого состава, поэтому здесь мотор-компрессора имеют меньшую мощность и производительность. Например, на электропоездах ЭР1 и ЭР2 применяются мотор-компрессоры ЭК-7 производительностью 0,63 м³/мин и мощностью 5 кВт. Помимо этого, если на локомотивах основное оборудование находится в кузове, то на пассажирском моторвагонном подвижном составе его уже приходится размещать под кузовом вагона, так как это необходимо для освобождения внутрикузовного пространства с целью увеличения площади пассажирского салона, хотя и накладывает серъёзные ограничения на размеры подвагонного электрооборудования. Особенно важно решить проблему с подвагонным размещением вспомогательных машин на пригородных электропоездах постоянного тока на напряжение 3000 В, так как двигатели на такое напряжение имеют значительные габариты (в основном обусловлено высокой толщиной межвитковой изоляции и ограничениями по межламельному напряжению на коллекторе). Применение такого электродвигателя в качестве привода компрессора нерационально, ввиду его громоздкости, поэтому конструкторы в мотор-компрессорах стали применять электродвигатели на меньшее напряжение. Собственно, именно из-за необходимости питания мотор-компрессоров меньшим напряжением и были созданы делители напряжения, которые преобразуют поступающие 3000 В от контактной сети в 1500 В, которые уже питают двигатель компрессора. Впоследствии на электропоездах постоянного тока конструкторы отказались от применения мотор-компрессоров с двигателями постоянного тока и заменили их привод на трёхфазные двигатели переменного тока, питание которым поступает от преобразователя (на советских/российских электропоездах — типа 1ПВ, постоянный 3000 В → 3-фазный переменный 380 В).

На вагонах метрополитена и трамвая для привода мотор-компрессора нередко применяется двигатель, выполненный на меньшее напряжение, чем напряжение питания. В этом случае двигатели компрессоров подключаются к сети через резистор.

См. также

Литература

Эта страница последний раз была отредактирована 23 февраля 2018 в 18:46.

wiki2.org

Реферат Мотор-компрессор

скачать

Реферат на тему:

Мотор-компрессор (на схемах часто обозначается МК) — агрегат, совмещающий в себе приводной электрический двигатель и компрессор (в основном поршневой, редко винтовой). Активно применяется на электротранспорте (электровозы, электропоезда, трамвай, вагоны метрополитена, троллейбус), где служит для выработки сжатого воздуха.

Также мотор-компрессоры используются и в быту, в частности они являются «сердцем» холодильников (см.: Холодильный компрессор) и кондиционеров, в которых перекачивают хладагент.

Мотор-компрессоры на ЭПС

Мотор-компрессор является одной из основных вспомогательных машин на электрическом подвижном составе (ЭПС), так как создаваемый им сжатый воздух используется прежде всего в тормозной системе и для привода электропневматических контакторов, а на пассажирском моторвагонном подвижном составе пневматическим приводом оборудованы и двери для выхода из вагонов.

Характеризуют мотор-компрессоры по номинальной подаче воздуха, давлением нагнетания, потребляемой мощностью, напряжению и роду (постоянный или переменный) тока питания, КПД, мощности а также типом двигателя. Электродвигатели мотор-компрессоров как правило двух типов:

  • постоянного тока с последовательным возбуждением — применяется на ЭПС постоянного тока либо двойного питания;
  • асинхронный переменного тока — применяется на ЭПС переменного тока, редко на электропоездах постоянного тока (ЭР22, ЭТ2)

Значительное отличие у мотор-компрессоров применяемых на локомотивах и МВПС, что связано со спецификой их работы. Так на электровозе один-два компрессора должны снабжать воздухом систему со значительным объёмом (ввиду высокой длины поезда), поэтому данные мотор-компрессора характеризует высокая производительность и мощность. Например, на электровозе ЧС8 применены компрессоры K3-Lok2 производительностью 2,9 м³/мин и мощностью 25 кВт. В отличие от электровозов, на электропоездах имеются несколько компрессоров (на вагонах метрополитена — на каждом вагоне, либо 2 компрессора на 3 вагона; на пригородных поездах — 1 компрессор на 2 вагона), которые распределены по длине относительно короткого состава, поэтому здесь мотор-компрессора имеют меньшую мощность и производительность. Например, на электропоездах ЭР1 и ЭР2 применяются мотор-компрессоры ЭК-7 производительностью 0,63 м³/мин и мощностью 5 кВт. Помимо этого, если на локомотивах основное оборудование находится в кузове, то на пассажирском моторвагонном подвижном составе его уже приходится размещать под кузовом вагона, так как это необходимо для освобождения внутрикузовного пространства с целью увеличения площади пассажирского салона, хотя и накладывает серъёзные ограничения на размеры подвагонного электрооборудования. Особенно важно решить проблему с подвагонным размещением вспомогательных машин на пригородных электропоездах постоянного тока на напряжение 3000 В, так как двигатели на такое напряжение имеют значительные габариты (в основном обусловлено высокой толщиной межвитковой изоляции и ограничениями по межламельному напряжению на коллекторе). Применение такого электродвигателя в качестве привода компрессора нерационально, ввиду его громоздкости, поэтому конструкторы в мотор-компрессорах стали применять электродвигатели на меньшее напряжение. Собственно, именно из-за необходимости питания мотор-компрессоров меньшим напряжением и были созданы делители напряжения, которые преобразуют поступающие 3000 В от контактной сети в 1500 В, которые уже питают двигатель компрессора. Впоследствии на электропоездах постоянного тока конструкторы отказались от применения мотор-компрессоров с двигателями постоянного тока и заменили их привод на трёхфазные двигатели переменного тока, питание которым поступает от преобразователя (на советских/российских электропоездах — типа 1ПВ, постоянный 3000 В → 3-фазный переменный 380 В).

На вагонах метрополитена и трамвая для привода мотор-компрессора нередко применяется двигатель, выполненный на меньшее напряжение, чем напряжение питания. В этом случае двигатели компрессоров подключаются к сети через резистор.

Литература

  • Мотор-компрессор // Железнодорожный транспорт: Энциклопедия / Гл. ред. Н. С. Конарев. — М.: Большая Российская энциклопедия, 1994. — С. 250. — ISBN 5-85270-115-7

wreferat.baza-referat.ru

Мотор-компрессор — Machinepedia

Мотор-компрессор "Атлант"

Мотор-компрессор совмещает в себе приводной электрический двигатель и компрессор (в основном поршневой, редко винтовой). Активно применяется на электротранспорте (электровозы, электропоезда, трамвай, вагоны метрополитена, троллейбус), где служит для выработки сжатого воздуха.

Также мотор-компрессоры используются и в быту, в частности они являются «сердцем» холодильников и кондиционеров, в которых перекачивают хладагент.

Мотор-компрессор является одной из основных вспомогательных машин на электрическом подвижном составе (ЭПС), так как создаваемый им сжатый воздух используется прежде всего в тормозной системе и для привода электропневматических контакторов, а на пассажирском моторвагонном подвижном составе пневматическим приводом оборудованы и двери для выхода из вагонов.

Характеризуют мотор-компрессоры по

  • номинальной подаче воздуха,
  • давлением нагнетания,
  • потребляемой мощностью,
  • напряжению и
  • роду (постоянный или переменный) тока питания,
  • КПД,
  • мощности а также
  • типом двигателя.

Электродвигатели мотор-компрессоров как правило двух типов:

  • постоянного тока с последовательным возбуждением — применяется на ЭПС постоянного тока либо двойного питания;
  • асинхронный переменного тока — применяется на ЭПС переменного тока, редко на электропоездах постоянного тока (ЭР22, ЭТ2)

Значительное отличие у мотор-компрессоров применяемых на локомотивах и МВПС, что связано со спецификой их работы. Так на электровозе один-два компрессора должны снабжать воздухом систему со значительным объёмом (ввиду высокой длины поезда), поэтому данные мотор-компрессора характеризует высокая производительность и мощность. Например, на электровозе ЧС8 применены компрессоры K3-Lok2 производительностью 2,9 м³/мин и мощностью 25 кВт. В отличие от электровозов, на электропоездах имеются несколько компрессоров (на вагонах метрополитена — на каждом вагоне, либо 2 компрессора на 3 вагона; на пригородных поездах — 1 компрессор на 2 вагона), которые распределены по длине относительно короткого состава, поэтому здесь мотор-компрессора имеют меньшую мощность и производительность. Например, на электропоездах ЭР1 и ЭР2 применяются мотор-компрессоры ЭК-7 производительностью 0,63 м³/мин и мощностью 5 кВт. Помимо этого, если на локомотивах основное оборудование находится в кузове, то на пассажирском моторвагонном подвижном составе его уже приходится размещать под кузовом вагона, так как это необходимо для освобождения внутрикузовного пространства с целью увеличения площади пассажирского салона, хотя и накладывает серъёзные ограничения на размеры подвагонного электрооборудования. Особенно важно решить проблему с подвагонным размещением вспомогательных машин на пригородных электропоездах постоянного тока на напряжение 3000 В, так как двигатели на такое напряжение имеют значительные габариты (в основном обусловлено высокой толщиной межвитковой изоляции и ограничениями по межламельному напряжению на коллекторе). Применение такого электродвигателя в качестве привода компрессора нерационально, ввиду его громоздкости, поэтому конструкторы в мотор-компрессорах стали применять электродвигатели на меньшее напряжение. Собственно, именно из-за необходимости питания мотор-компрессоров меньшим напряжением и были созданы делители напряжения, которые преобразуют поступающие 3000 В от контактной сети в 1500 В, которые уже питают двигатель компрессора. Впоследствии на электропоездах постоянного тока конструкторы отказались от применения мотор-компрессоров с двигателями постоянного тока и заменили их привод на трёхфазные двигатели переменного тока, питание которым поступает от преобразователя (на советских/российских электропоездах — типа 1ПВ, постоянный 3000 В → 3-фазный переменный 380 В).

На вагонах метрополитена и трамвая для привода мотор-компрессора нередко применяется двигатель, выполненный на меньшее напряжение, чем напряжение питания. В этом случае двигатели компрессоров подключаются к сети через резистор.

machinepedia.org

Мотор-компрессор ЭК-4Б вагонов метро

 

содержание   ..  1  2  3  4  5   ..

 

 

Мотор-компрессор ЭК-4Б вагонов метро

Мотор-компрессор ЭК-4Б предназначен для производства сжатого воздуха на вагоне и его нагнетания в главный резервуар с целью накопления.

Установлен под вагоном в его хвостовой части в районе второй тележки и крепится к специальным кронштейнам рамы кузова при помощи трех болтов с использованием резинометаллических втулок-амортизаторов.

Рис. 2.10. Компрессор. Общий вид и базовые составные части

Состоит из трех основных узлов — электродвигателя (1), компрессора (3) и редуктора (2). Осевая линия валов мотор-компрессора располагается поперек кузова вагона, а электродвигатель крепится к корпусу (картеру) компрессора при помощи шести болтов М16. Картер компрессора, отливаемый из серого чугуна, является деталью, на которой монтируются все остальные узлы. Доступ в корпус осуществляется через окна, закрываемые крышками. Связующим звеном между электродвигателем и компрессором является двухступенчатый редуктор.

 

Рис. 2.11. Работа компрессора

 

 

Электродвигатель

Предназначен для создания крутящего момента на коленчатом валу компрессора.

Рис. 2.12. Двигатель мотор-компрессора. Составные части

Узел двигателя состоит из следующих элементов: электродвигателя (1), прессшпановой прокладки (2), малой (ведущей) шестерни (3), которая фиксируется на валу электродвигателя с помощью шпонки (7), упорной шайбы (4) и пластинчатой шайбы (5), а также двух болтов (6).

Электродвигатель ДК-408В представляет собой четырёхполюсную коллекторную машину постоянного тока с напряжением питания 750 В мощностью 4,5 кВт и частотой вращения якоря (вала двигателя) 1500 об/мин.

Редуктор

Предназначен для  уменьшения частоты вращения коленчатого вала компрессора при передаче на него крутящего момента с вала электродвигателя при одновременном увеличении крутящего момента на коленчатом валу.

 

Рис. 2.13. Редуктор мотор-компрессора

Редуктор выполнен в виде четырех косозубых цилиндрических шестерен. Шестерня (3) находится на валу электродвигателя и является ведущей, а шестерня (4) — на коленчатом валу компрессора и является ведомой. Шестерни (1) и (2) служат в качестве промежуточного звена и располагаются на отдельном эксцентриковом валу, ось которого находится ниже осей двух основных валов — электродвигателя и коленчатого вала компрессора. При этом с шестерней (3) входит в зацепление шестерня (2), а с шестерней (4) — шестерня (1).

Общее передаточное число редуктора — 3,9.

Примечания:

Передаточным числом редуктора называется отношение частоты ведущего вала к частоте ведомого, т.е. отношение частоты вращения вала электродвигателя к частоте вращения коленчатого вала компрессора.

 

Компрессор вагонов метро

Предназначен для  непосредственного сжатия поступающего воздуха.

По устройству и принципу работы мотор-компрессор:

  •  поршневой, с кривошипно-шатунным механизмом  
  •  с горизонтальным расположением цилиндров  
  •  двухцилиндровый  
  •  однорядный  
  •  воздушного (естественного) охлаждения  
  •  простого действия  
  •  одноступенчатого сжатия  
  •  низкого давления  
  •  малой производительности

Режим работы — повторно-кратковременный с продолжительностью включения до 50 %.

Примечания:

Производительностью называется количество сжатого до давления нагнетания воздуха, которое создает компрессор за единицу времени (л/мин).

Основные технические характеристики:

  •  Давление нагнетания — не более 8,2 АТ
  •  Производительность расчетная — 700 л/мин
  •  Производительность (эффективная) — не менее 420 л/мин
  •  Частота вращения коленчатого вала (номинальная) — 385 об/мин
  •  Потребляемая мощность (мощность, затрачиваемая на вращение коленчатого вала компрессора) — 3,7 кВт
  •  Диаметр цилиндра — 112 мм
  •  Ход поршня — 92 мм
  •  Направление вращения коленчатого вала (если смотреть со стороны электродвигателя) — по часовой стрелке
  •  Масса мотор-компрессора в сборе — 313 кг, из них компрессор вместе с редуктором — 104 кг.

Устройство компрессора вагонов метро

Компрессор представляет собой картер (корпус) (рис. 2.14), в котором в двух шариковых подшипниках вращается двухколенный коленчатый вал (1). Подшипник (2) вмонтирован в кольцевую расточку торцевой стенки внутри картера, а подшипник (12) — в съемную крышку (8), которая крепится к картеру с торца через прессшпановую прокладку (10) четырьмя болтами и имеет прилив в виде втулки под болт подвески, а также штуцер, закрываемый пробкой (11), необходимый для вентиляции картера. Внутренние кольца подшипников (вместе с ведомой шестерней (4)) поджимаются упорными шайбами (5), а их болты (7) контрятся пластинчатыми шайбами (6). Внешнее кольцо подшипника (12) фиксируется в крышке (8) с помощью стопорного кольца (9).

Рис. 2.14. Коленчатый вал и опорные подшипники

К каждой шейке коленчатого вала крепится (рис. 2.15) шатун (21), имеющий разъемную головку (18), скрепляющуюся двумя шатунными болтами (15) через прокладки (16) и разбрызгиватель (17). Болты завинчиваются гайками (19) и стопорятся шплинтами (20). При сборке нижней головки используются направляющие штифты (22). Нижняя головка в сборе с заливкой (23) представляет собой нижний шатунный подшипник. В верхнюю головку шатуна (14) запрессовывается бронзовая втулка (13), являющаяся верхним шатунным подшипником для поршневого пальца, при помощи которого поршень соединяется с шатуном.

Рис. 2.15. Составные части шатуна

Каждый поршень (1) (рис. 2.16) с внешней стороны имеет четыре кольцевых канавки (ручья) для четырех поршневых колец. Из них ближайшие к днищу поршня предназначены для компрессионных колец (2), изготовленных из чугуна, а две других канавки используются для маслосъемных колец (3), выполненных из капрона или алюминиевого сплава. Одно из этих колец устанавливается сразу за двумя компрессионными, а второе маслосъемное кольцо размещается на юбке поршня. Требуемая упругость маслосъемных колец обеспечивается волновыми пружинными эспандерами (6), которые закладываются в канавки поршня под кольца. Подвижное соединение шатуна с поршнем обеспечивается установкой поршневого пальца (4), который фиксируется двумя стопорными кольцами (5).

Рис. 2.16. Поршень компрессора

Оба поршня размещаются в блоке цилиндров (4) (рис. 2.17), который крепится к картеру шестью шпильками М14 (1) через прессшпановую прокладку (2) с использованием двух направляющих штифтов (3). На шпильки навинчиваются гайки (6) с пружинными шайбами (5).

Рис. 2.17. Блок цилиндров

Блок цилиндров завершается крышкой клапанной коробки (17), между нею и блоком цилиндров размещается сама клапанная коробка (9). Крепление крышки и клапанной коробки к блоку цилиндров производится шестью шпильками М16 (7) через уплотнительные прокладки (8) и (15), изготовленные из прессшпана или паронита с использованием направляющего штифта (16). На шпильки навинчиваются гайки (19) с пружинными шайбами (18).

Крышка клапанной коробки изнутри разделена на две обособленных полости — всасывающую, находящуюся снизу и заканчивающуюся снаружи входным штуцером (А) и нагнетательную, находящуюся сверху и заканчивающуюся снаружи выходным штуцером (В). Крышка и блок цилиндров с внешней стороны снабжены ребрами для усиления теплоотдачи.

Примечание:

При вращении коленчатого вала шатунная шейка совершает круговое движение, так же, как и нижняя головка шатуна. При этом верхняя головка шатуна и поршни совершают возвратно-поступательное движение. Движение, которое совершает шатун в целом, называется плоским.

 

Клапанная коробка вагонов метро

Клапанная коробка представляет собой две стальных плиты (1), между которыми в углублениях размещаются двенадцать стальных упругих пластин (3). Каждый клапан образует группа из трех пластин — таким образом, каждый цилиндр компрессора снабжен одним блоком из трех всасывающих клапанов (снизу) и одним блоком из трех нагнетательных клапанов (сверху). Фиксация пластины между плитами осуществляется при помощи шпонок (2). Сами плиты соединяются между собой посредством двух винтов (4) с гайками (5)

Рис. 2.18. Узел клапанов

Работу клапанной коробки иллюстрирует схема.

Рис. 2.19. Работа клапанов

При неработающем компрессоре (рис. 2.19) его поршни (3) неподвижны, пластины всасывающего (1) и нагнетательного (2) клапанов занимают свободное (вертикальное) положение. При работе компрессора работу каждого цилиндра можно разделить на два такта — всасывания и нагнетания.

При всасывании воздуха в цилиндр объем под поршнем увеличивается (при этом поршень на рис. 2.19 движется влево), и пластины всасывающего клапана, прижимаясь к упорному бурту, прогибаются и пропускают воздух в цилиндр. В это же время пластины нагнетательного клапана, также прогибаясь, еще более плотно прижимается к седлу, тем самым исключая попадание воздуха из нагнетательного патрубка обратно в компрессор.

При нагнетании воздуха объем под поршнем уменьшается — происходит сжатие — на рис. 2.19 это соответствует движению поршня вправо. Упругое усилие пластины нагнетательного клапана рассчитано так, что она начинает отгибаться от седла, когда давление в цилиндре становится равным расчетному давлению нагнетания — при этом уже пластины всасывающих клапанов оказываются плотно прижаты к своим седлам. Таким образом, действие пластин нагнетательного клапана аналогично действию пластин всасывающего клапана.

 

Смазка компрессора вагонов метро

Для смазки компрессора применяется компрессорное масло К-12 (для зимы) или К-19 (для лета). Масло объемом 2,5 л заливается в картер через горловину в его верхней части. Уровень масла определяется по маслоуказателю, который представляет собой щуп, вмонтированный в винтовую пробку. Она вкручивается в резьбовое отверстие, расположенное на задней стенке картера (с противоположной от блока цилиндров стороны) и использующееся для подлива масла в картер.

Рис. 2.20. Маслоуказатель компрессора

Смазка трущихся частей компрессора — барботажная, осуществляется с помощью двух разбрызгивателей (2) (рис. 2.21), установленных в разъемах нижних шатунных головок. При вращении коленчатого вала эти части шатунов совершают круговое движение, при этом ребристая поверхность разбрызгивателя, погружаясь в масло, разбрызгивает его при последующем перемещении вверх. Таким образом, внутри картера создается масляный туман. Этой масляной взвесью и смазываются нижние шатунные подшипники (1) и все остальные трущиеся части компрессора.  Смазка зубчатой передачи редуктора происходит за счет двух нижних шестерен промежуточного звена, погруженных в масляную ванну.

Рис. 2.21. Разбрызгиватель компрессора

Примечание:

При постановке состава в депо машинист обязан проверить на ощупь степень нагрева картера компрессора — он должен быть тёплым или горячим, но не обжигающим руку. Следует проверить надежность крепления мотор-компрессора и состояние всех его узлов. Также необходимо обратить внимание на целостность двух предохранительных тросов, опоясывающих мотор-компрессор снизу и служащих для предотвращения его падения на путь в случае излома элементов подвески.

Определение производительности компрессора

Производительностью компрессора называется величина, равная объему сжимаемого  за единичное время (1 минуту) воздуха. Производительность подразделяют на теоретическую (равна 700 литрам в минуту) и эффективную (равна 420 литрам в минуту). Последняя всегда меньше первой из-за наличия в цилиндрах компрессора мертвого пространства, наличия противодавления в пространстве под поршнем, а также упругого сопротивления пластинчатых клапанов, гидросопротивлению при всасывании и нагнетании и потерям на трение при вращении коленчатого вала.

Примечание:

Мертвым пространством (воздушной подушкой) называется свободное пространство между днищем поршня и клапанной коробкой. Оно образуется из-за того, что поршень в своем верхнем положении (положении окончания фазы нагнетания) не доходит до клапанной коробки — между ними сохраняется постоянный зазор. После нагнетания воздух, оставшийся в образовавшейся воздушной подушке, имеет давление, равное давлению нагнетания. Чем оно выше, тем больший ход поршня требуется для того, чтобы расширить оставшийся под поршнем воздух до атмосферного, т.к. только в этот момент открывается всасывающий клапан.

Рис. 2.22. Схема возникновения мертвого пространства

  • 1. Определение производительности в эксплуатации

Для этого необходимо при включившихся МК на всем составе засечь по манометру прирост давления воздуха в напорной магистрали за одну минуту их работы. Этот прирост должен составлять не менее 1 АТ. Это говорит о том, что все МК на составе работоспособны и имеют расчетную эффективную производительность: 

           Q = Vнм x (Pкон-Pнач) / t

Здесь Q — производительность, Vнм — объем напорной магистрали (420 л), Pкон — избыточное давление по окончании замера (1 АТ), Pнач — избыточное давление в начале замера (0 АТ), t — время испытания (1 мин).

  • 2. Определение производительности на отдельном вагоне

Выполняется в ТР-2 после замены клапанной коробки или в ТР-3 после ремонта самого МК. Для этого необходимо на порожнем вагоне закрыть концевые краны напорной и тормозной магистралей, соединить все воздушные магистрали между собой, ручку крана машиниста перевести во второе (поездное) положение и при закрытых дверях включить МК. При этом время его работы до достижения давления воздуха 8 АТ в напорной и других воздушных магистралях вагона должно составлять не более 8 минут.

  • 3. Определение производительности методом двух резервуаров.

 

Рис. 2.23. Определение производительности методом двух резервуаров

Производится при изготовлении нового МК, а также в случае его ремонта на заводе-изготовителе. Для этого следует закрыть все краны, включить МК и, после увеличения давления воздуха в I резервуаре до 8 АТ, открыть полностью кран 3, а кран 1 приоткрыть так, чтобы величина давления в I резервуаре сохранилась постоянной — 8 АТ. После этого необходимо полностью открыть кран 2, а кран 3 полностью закрыть. При этом ведется наблюдение за величиной давления воздуха во II резервуаре — за 1 минуту она должна вырасти не менее, чем на 1,5 АТ.

Причины снижения эффективной производительности:

  • Засорение воздушного фильтра компрессора
  • Неплотная посадка пластин клапанов на свои седла
  • Излом пластин клапанов или их подгар
  • Износ компрессионных колец поршней
  • Пробой уплотнительных прокладок клапанной коробки
  • Неплотность в соединении выходного штуцера крышки с накидной гайкой трубопровода напорной магистрали.

Двухступенчатый компрессор вагонов метро

На локомотивах железнодорожного транспорта применяются двухступенчатые компрессоры типа КТ6-Эл. Они имеют две ступени сжатия. Первая ступень имеет два цилиндра, вторая — один. Между первой и второй ступенью воздух проходит через радиатор промежуточного охлаждения. Рабочее давление сжатого воздуха составляет 9,0 кгс/см2.

Рис. 2.24. Схема работы двухступенчатого компрессора

Воздушные резервуары

Воздушные резервуары (емкости) предназначены для создания необходимого запаса сжатого воздуха определенного давления для обеспечения действия пневматических приборов и электрических аппаратов после остановки компрессоров.

Рис. 2.25. Воздушный резервуар

Резервуары наполняются сжатым воздухом давлением 5÷8 АТ и относятся к наиболее ответственному оборудованию вагонов метрополитена.

В зависимости от типа, на вагоне может быть установлено несколько воздушных резервуаров: от двух на номерных вагонах с краном машиниста № 013 до четырех на вагонах "Е" с краном машиниста № 334.

Все резервуары размещаются под вагоном и крепятся к раме кузова посредством двух хомутов с использованием деревянных подкладок ― между рамой кузова и резервуаром.

Примечания:

Применение деревянных подкладок обусловлено, прежде всего, хорошей изоляционной способностью дерева. В случае непреднамеренного переброса низковольтного напряжения на трубопроводы магистрали управления, а через них на все трубопроводы, воздушные резервуары также окажутся под напряжением. Резервуары, благодаря своему большому объему, начнут выступать в роли конденсаторов электрической энергии, что может вызвать пробой, т.е. появление дугового искрообразования между резервуаром и заземленной рамой кузова. Структура металла стенки резервуара будет нарушена.

Переброс напряжения может возникнуть из-за неисправности электромагнитных вентилей цепи управления и разрушения орешковых изоляторов.

 

 

 

 

 

 

содержание   ..  1  2  3  4  5   ..

 

 

 

zinref.ru

Компрессор или турбина что лучше выбрать для автомобиля: преимущества и недостатки этих агрегатов

В наше время очень актуально увеличивать скоростные показатели своего автомобиля. Наиболее распространённые варианты это установка компрессора или турбины: что лучше пробуем разобраться в этой статье.

Но для начала разберёмся с принципами работы, плюсами и минусами данных улучшений для двигателя.

Принцип работы компрессора

Существуют объёмные нагнетатели, они подают воздух в двигатель равными порциями независимо от скорости, что даёт преимущества на низких оборотах.

механический компрессор

Нагнетатель

Компрессоры внешнего сжатия, очень хорошо подходят там, где требуется много воздуха на низких оборотах. Минус, это то, что давления он сам не создаёт и может создать обратный поток. Его сжатие имеет довольно низкий КПД.

Компрессоры внутреннего сжатия довольно хороши на высоких оборотах и имеет намного меньший эффект обратного потока. Из-за высоких требований к изготовлению имеют высокую цену, а при перегреве имеют шанс заклинивания.

Динамические нагнетатели работают при достижении, определённых оборотов, но зато с большой эффективностью.

Компрессоры работают от коленчатого вала двигателя с помощью дополнительного привода. И поэтому обороты компрессора зависят от оборотов двигателя.

Видео: устройство и принцип работы винтового компрессора.

Так, переходим к турбо-наддуву, чтобы определиться, что лучше компрессор или турбина.

Принцип работы турбины

Турбина работает за счёт энергии отработавших газов. Турбокомпрессор — это комбинирование турбины и центробежного компрессора.

Выхлопные газы с большей скоростью вращают колесо турбины на валу, а в другом конце вала находится центробежный насос, который нагнетает больше воздуха в цилиндры.

компрессор или турбина

Чтобы охладить сжатый турбиной воздух, используют дополнительный радиатор — интеркулер.

Недостатки компрессора и турбины

Турбина хорошо подходит для обогащения кислородом топливной смеси. Но всё же имеет свои минусы:

  • турбина — это стационарное устройство и требует полную привязку к двигателю;
  • на малых оборотах она не даёт большой мощности, а только на больших способна показать всю свою мощь;
  • переход с малых оборотов до высоких называется турбо — ямой, чем большую мощность имеет турбина, тем больше будет эффект турбо — ямы.

В наше время уже имеются турбины, отлично работающие на высоких и на низких оборотах двигателя, но и цена у них соответственно приличная. При выборе компрессора или турбины, многие отдают предпочтение турбо-наддуву, независимо от цены.

чем отличается компрессор от турбины

Что же лучше — компрессор или турбина

С компрессором намного проще при установке и эксплуатации. Работает он на низких и на высоких оборотах. Также он не требует больших усилий или затрат при ремонте, так как в отличие от турбины, компрессор независимый агрегат.

Чтобы настроить турбину, понадобится хороший специалист для настройки под топливную смесь. А что бы настроить компрессор не нужно больших усилий, или каких либо профессиональных знаний, всё настраивается топливными жиклёрами.

Помимо всего, турбо-наддув довольно сильно нагревается, из-за своей особенности, развивать очень высокие обороты.

У приводных нагнетателей (компрессор), давление не зависит от оборотов и поэтому автомобиль очень чётко реагирует на нажатие педали газа, а это довольно ценное качество, когда машина разгоняется. Ещё они очень просты в своей конструкции.

Но есть недостатки и у компрессоров, моторы оборудованные нагнетателями с механическим приводом имеют большой расход топлива и меньший КПД, в сравнении с турбиной.

Также имеются большие различия в цене. Любая мощная турбина популярного производителя будет иметь большую стоимость и будет дорога в обслуживании. И к тому же требуется для её установки, немало дополнительного оборудования. Компрессору же, нужен только дополнительный привод.

Видео: как работает турбина и компрессор.

В любом случае решать вам, что лучше компрессор или турбина, взвесьте все положительные и отрицательные качества, и сделайте правильное решение!

Загрузка...

avto-i-avto.ru


Смотрите также