Как работает компрессор: теоретический процесс. Работа компрессора


Работа поршневого компрессора | Работа компрессора

      Здравствуйте! Для получения сжатого воздуха и других газов применяют специальные машины, называемые компрессорами. Рассмотрим работу поршневого компрессора, цикл которого изображен на рис. 1.

      В процессе 0—1 всасывающий клапан компрессора открыт и вследствие движения поршня в цилиндр засасывается воздух, причем в идеальном компрессоре поршень перемещается без трения о стенки цилиндра. Воздух поступает в цилиндр под давлением окружающей среды, поэтому работа в изобарном процессе 0—1 совершается окружающей средой. В этом процессе масса газа в цилиндре изменяется, однако при термодинамическом анализе цикла это не учитывается, так как работа в процессе 0—1 равна работе в эквивалентном изобарном процессе 0—1 с постоянной массой газа.

      Процесс 1—2 соответствует адиабатному сжатию газа в цилиндре за счет механической энергии, затрачиваемой на привод компрессора. В точке 2 открывается выпускной клапан, и сжатый воздух при постоянном давлении р2 удаляется из цилиндра. В процессе 2—3 масса воздуха изменяется, однако, как и процесс 0—1, его можно считать изобарным процессом при постоянном количестве воздуха. В точке 3 закрывается выпускной клапан и открывается всасывающий, в результате чего давление воздуха на поршень падает до атмосферного давления р1 и затем описанный процесс снова повторяется.

      В процессах 1—2 и 2—3 механическая энергия подводится от двигателя, а при изобарном расширении 0—1 работу совершает окружающая среда. Работа, совершаемая двигателем, на pυ — диаграмме эквивалентна разности площадей, ограниченных кривыми этих процессов, и соответствует площади цикла 0—1— 2—3—0.

      Анализ цикла компрессора показывает, что работа на привод компрессора будет тем меньше, чем более полого расположена кривая процесса сжатия 1—2. Наиболее пологой (практически осуществимой) кривой сжатия является изотерма, так как нагревающийся при сжатии газ можно охлаждать лишь за счет теплообмена с окружающей средой, поэтому наиболее экономичным циклом является цикл компрессора с изотермическим сжатием 1—2'. Поскольку сжатие по изотерме необходимо производить достаточно медленно, чтобы при этом успеть отвести от газа теплоту, то такое сжатие на практике не применяют. Обычно в компрессорах применяется одно- или многоступенчатое адиабатное сжатие.

Рисунок 1,2

     Работу для привода компрессора при одноступенчатом сжатии можно определить как алгебраическую сумму работ в изобарных процессах 0—1 и 2—3; l0-1=p1υ1 и l2-3= -р2υ2, где υ1 и υ2 — удельные объемы соответственно в точках 1 и 2, а также работы l в адиабатном процессе 1—2.

После преобразований получим:

Рисунок 3

      При одноступенчатом адиабатном сжатии, кроме увеличения расхода энергии, с ростом конечного давления р2 значительно возрастает температура в конце сжатия, что недопустимо вследствие взрывоопасности сжимаемого газа, который содержит пары масла, поэтому при адиабатном сжатии конечное давление обычно не превышает 0,8—1 МПа. Чтобы избежать недостатков, присущих адиабатному сжатию в одноступенчатых компрессорах, применяют многоступенчатое сжатие с промежуточным охлаждением газа после каждой ступени.

      Теоретический цикл многоступенчатого компрессора представлен на рис. 2. Процесс 1—8 соответствует адиабатному сжатию, а процесс 1—7—изотермическому сжатию. В первой ступени компрессора происходит сжатие по адиабате 1—2, затем воздух поступает в охладитель, где происходит изобарный отвод теплоты в процессе 2—3. В двух последующих ступенях также происходит адиабатное сжатие (процессы 3—4 и 5—6). Изобара 4—5 соответствует охлаждению воздуха после второй ступени.

      Конечное состояние воздуха определяется точкой 6. Как следует из pυ — диаграммы, многоступенчатый компрессор по экономичности занимает промежуточное положение между компрессорами с адиабатным и изотермическим сжатием. Экономичность его возрастает с увеличением числа ступеней. В пределе, когда число ступеней очень велико, многоступенчатый процесс сжатия приближается к изотермическому процессу 1—7.

     В настоящее время применяются компрессоры, в которых газу сообщается кинетическая энергия с помощью вращающихся лопаток, например центробежные компрессоры. Давление газа при этом повышается за счет уменьшения его кинетической энергии. Сказанное выше о преимуществах изотермического и многоступенчатого сжатия в равной мере относится и к установкам этого типа. Исп. литература: 1) Теплотехника, под редакцией А.П.Баскакова, Москва, Энергоиздат, 1982. 2) Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,"Вышейшая школа", 1976.

teplosniks.ru

Как работает компрессор: принцип работы

#1

Много промышленного оборудования работает с использование сжатого воздуха, создаваемого различными типами компрессоров. При комплектовании механизмов систем сжатого воздуха для различного производства требуется знать, как работает компрессор. Для выбора оборудования при создании рабочего процесса с применением сжатого воздуха, необходимо знать, как работает компрессор, способный удовлетворить заданным требованиям. Принцип действия компрессора основан на законах технической термодинамики. Используются основные термодинамические параметры газа: давление, температура и удельный вес или плотность. Закономерности протекания тепловых процессов в компрессоре рассматриваются на упрощенной модели идеального компрессора. В нем различают три рабочие фазы: всасывание, сжатие и нагнетание. По конструктивному исполнению компрессоры могут быть поршневыми, винтовыми и роторно-пластинчатыми.

#2

Наибольшее распространение получили поршневые компрессоры. Они надежные и удобные в эксплуатации, компактные, обладают стабильными рабочими характеристиками. Благодаря широким техническим возможностям и универсальности, поршневые компрессоры удовлетворяют требованиям различных сфер хозяйственной деятельности. В них объем воздуха изменяется от перемещения поршня из верхней мёртвой точки до нижней мёртвой точки. Создаваемая разность давлений вне цилиндра и внутри него автоматически открывает всасывающий клапан и воздух входит в цилиндр. При движении поршня в обратном направлении, воздух сжимается и давление в цилиндре повышается. Всасывающий клапан закрывается, нагнетательный – открывается. Сжатый воздух перемещается из цилиндра в ресивер или трубопровод. Конструктивно компрессор включает: поршень, цилиндр, двигатель, приводной вал, впускной и нагнетательный клапаны, фильтр и ресивер.

#3

В процессе работы компрессора двигатель вращает кривошипно-коленчатый или эксцентриковый приводной вал. За счет преобразования вращательного движения вала в возвратно-поступательное движение поршня, происходит наполнение воздухом полости ресивера. С помощью специального фильтра поступающий в компрессор воздух очищается и высушивается. Поступление воздуха в цилиндр компрессора обеспечивается синхронной работой клапанов. В ресивере сжатый воздух накапливается и далее по трубопроводам передается исполнительным механизмам. Ресивер уменьшает колебания сжатого воздуха в системе и создает необходимый объем для длительной работы исполнительных механизмов. За счет этого достигается надежная работа всей пневматической системы. Используются поршневые компрессорные установки простого и двойного действия.

#4

Для обеспечения эффективной и безопасной работы, компрессорные установки оснащаются дополнительными системами автоматического контроля функционирования. Реле давления воздуха управляет производительностью компрессора при изменении количества расходуемого сжатого воздуха. Автоматика обеспечивает включение компрессора при снижении давления в ресивере и выключение – при достижении максимального допустимого. Такая система снижает износ поршней и увеличивает срок службы компрессора. В зависимости от создаваемого давления, поршневые компрессоры делятся на типы: низкого давления - до 1,2, среднего – 10, высокого – 100 , сверхвысокого – более 100 МПа. По количеству ступеней они делятся на одноступенчатые, двухступенчатые и многоступенчатые.

#5

Принцип действия винтового компрессора основан на вращении двух роторов, смонтированных в корпусе. Ротор выполнен в виде винтовой нарезки специального профиля. Воздух всасывается порциями с последовательным перемещением по винтовой нарезке впадин при вращении роторов. В отличие от поршневого компрессора здесь сжатие воздуха происходит непрерывно. Для обеспечения нормального функционирования, профиль винтов ротора должен иметь непрерывную линию контакта. На роторе ротационно-пластинчатого компрессора выполнены пазы с установленными в них пластинами. При вращении ротора воздух сжимается в ячейках между рабочими пластинами. Объем рабочих полостей в процессе вращения ротора уменьшается, обеспечивая сжатие воздуха между пластинами и статором компрессора. Сжатый воздух очищается в маслоотделителе, затем подается в воздухосборник и через запорную аппаратуру к потребителям.

#6

При выборе компрессора необходимо провести оценку его качеств с учетом требований производства сжатого воздуха. Поршневые компрессоры имеют следующие недостатки: относительно ограниченная производительность; требуется тщательная очистка воздуха; относительно большой уровень шума и вибраций; повышенная частота технического обслуживания и ремонта. Применение поршневых компрессоров рационально для воздушных систем с небольшими и средними давлениями и расходами. Для производств с большими давлениями и потребностями сжатого воздуха целесообразнее применять винтовые компрессоры. Их преимущества: высокая производительность при непрерывной работе, что повышает КПД компрессора; большая долговечность эксплуатации; малый шум в процессе работы; небольшая потребность в техническом обслуживании и ремонте. К недостатку можно отнести высокую стоимость в сравнении с поршневыми компрессорами.

uznay-kak.ru

Устройство автомобиля. Как работает компрессор?

Как работает компрессор   С момента изобретения двигателя внутреннего сгорания автомобильные инженеры, любители скорости и проектировщики гоночных автомобилей все время находились в поисках путей увеличения мощности моторов. Один из способов увеличения мощности – построение двигателя большого внутреннего объема. Но большие двигатели, которые больше весят и обходятся существенно дороже в производстве и обслуживании, не всегда однозначно лучше. Другой путь добавления мощности – это создание двигателя нормального размера, но более эффективного. Вы можете достичь этого, нагнетая больше воздуха в камеру сгорания. Большее количество воздуха дает возможность подать в цилиндр дополнительное количество топлива, что обозначает, что будет произведен более сильный взрыв и будет достигнута большая мощность. Добавление компрессора к впускной системе является отличным способом достижения усиленной подачи воздуха. В этой статье мы объясним, что такое компрессоры (их также еще называют нагнетателями), как они работают и чем отличаются от турбокомпрессоров (турбонаддува). Компрессором является любое устройство, которое создает давление на выходе выше атмосферного. И компрессоры, и турбокомпрессоры способны это делать. На самом деле, турбокомпрессор является сокращенным названием от «турбонагнетателя» - его официального названия. Различие между данными агрегатами заключается в способе получения энергии. Турбокомпрессоры приводятся в действие за счет плотного потока выхлопных газов, вращающих турбину. Компрессоры работают за счет энергии, передаваемой механическим путем через ременный или цепной привод от коленчатого вала двигателя. В следующем разделе мы подробно рассмотрим, как компрессор выполняет свою работу.  Основы компрессора Обычный четырехтактный двигатель внутреннего сгорания использует один из тактов для впуска воздуха. Этот такт можно разделить на три шага:
  • Поршень перемещается вниз
  • Это создает разрежение
  • Воздух под атмосферным давлением засасывается в камеру сгорания
Как только воздух поступит в двигатель, он должен быть объединен с топливом для формирования заряда – пакета потенциальной энергии, которую можно превратить в полезную кинетическую энергию в результате химической реакции, известной как горение. Свеча зажигания инициирует эту реакцию путем воспламенения заряда. Как только топливо подвергается реакции окисления, сразу же высвобождается большое количество энергии. Сила этого взрыва, сконцентрированная над днищем поршня, толкает поршень вниз и создает возвратно-поступательное движение, которое в конечном итоге передается на колеса. Подача большего количества топливно-воздушной смеси в заряд будет порождать более сильные взрывы. Но вы не можете просто так подать больше топлива в двигатель, так как требуется строго определенное количество кислорода для сжигания определенного количества топлива. Химически-верная смесь – 14 частей воздуха к одной части топлива – имеет очень большое значение для эффективной работы двигателя. Итог – чтобы сжечь больше топлива, придется подать больше воздуха. Это работа компрессора. Компрессоры увеличивают давление на входе в двигатель путем сжатия воздуха выше атмосферного давления без образования вакуума. Это заставляет большему количеству воздуха попадать в двигатель, обеспечивая повышение давления. С дополнительным количеством воздуха больше топлива может быть добавлено, что вызывает увеличение мощности двигателя. Компрессор добавляет в среднем 46 процентов мощности и 31 процент крутящего момента. В условиях высокогорья, где мощность двигателя снижается за счет того, что воздух имеет меньшую плотность и давление, компрессор обеспечивает более высокое давление воздуха в двигателе, что позволяет ему работать в оптимальном режиме.Рис.1 ProCharger D1SC – центробежный компрессор   В отличие от турбокомпрессоров, которые используют отработанные газы для вращения турбины, механические компрессоры приводятся в действие непосредственно от коленчатого вала двигателя. Большинство из них приводятся в движение с помощью приводного ремня, который обернут вокруг шкива, который подключен к ведущей шестерне. Ведущая шестерня, в свою очередь, вращает шестерню компрессора. Ротор компрессора может быть по-разному спроектирован, но, не смотря на это, в любом случае его работа сводится к захвату воздуха, сжатию воздуха в меньшем пространстве и сбросу его во впускной коллектор. Для того чтобы создавать давление воздуха, компрессор должен вращаться быстрее, чем сам двигатель. Создание ведущей шестерни большей, чем шестерни компрессора, заставляет компрессор вращаться быстрее. Компрессоры способны вращаться со скоростью, превышающей 50,000-60,000 оборотов в минуту. Компрессор, вращающийся со скоростью 50,000 оборотов в минуту, способен повысить давление с шести до девяти дюймов на квадратный дюйм (PSI). Это дополнительная прибавка с шести до девяти фунтов на квадратный дюйм. Атмосферное давление на уровне моря составляет 14,7 фунтов на квадратный дюйм, так что типичный эффект от применения компрессора – это увеличение подачи воздуха в двигатель примерно на 50 процентов. Постольку поскольку воздух сжимается, он становится более горячим, а это значит, что он теряет свою плотность и не может столь сильно расширяться во время взрыва. Это обозначает, что он не может высвободить столько же энергии, сколько высвобождается при воспламенении свечой зажигания более холодной топливно-воздушной смеси. Для того чтобы компрессор работал на пике своей эффективности, сжатый воздух на выходе из компрессора должен быть охлажден перед подачей во впускной коллектор. Интеркулер несет ответственность за данный процесс охлаждения. Интеркуллеры бывают двух констуркций: «воздух-воздух» и «воздух-жидкость». Оба работают по принципу радиатора, с более холодным воздухом или жидкостью, циркулирующей по системе трубок или каналов. Горячий воздух, выходя из компрессора, попадает в трубки интеркулера и охлаждается там. Снижение температуры воздуха увеличивает его плотность, что делает плотнее заряд, поступающий в камеру сгорания. Далее мы рассмотрим различные типы компрессоров.    Роторный компрессор Roots Существует три вида компрессоров: роторный, двухвинтовой и центробежный. Главное отличие между ними заключается в способе подачи воздуха во впускной коллектор двигателя. Роторный и двухвинтовой компрессоры используют различные типы кулачковых валов, а центробежный компрессор – крыльчатку, которая увлекает воздух внутрь. Хотя все эти конструкции обеспечивают прибавку мощности, они значительно отличаются по своей эффективности. Каждый из этих типов компрессоров может быть доступен в различных размерах, в зависимости от того, какого результата хотите вы достичь – просто повысить мощность автомобиля или подготовить его к участию в гонках. Конструкция роторного компрессора является самой древней. Братья Филандер и Фрэнсис Рутс в 1860 году запатентовали конструкцию своего компрессора в качестве машины, способной обеспечивать вентиляцию в шахтах. В 1900 году Готтлиб Вильгельм Даймлер включил роторный компрессор в конструкцию автомобильного двигателя.  Рис.2  Роторный компрессор   Так как кулачковые валы вращаются, воздух, находящийся в пространстве между кулачками, оказывается между стороной наполнения и напорной стороной. Большое количество воздуха перемещается во впускной коллектор и создает условия для образования положительного давления. По этой причине рассматриваемая конструкция является не чем иным, как объемным нагнетателем, а не компрессором, при этом термин «нагнетатель» по-прежнему часто используется для описания всех компрессоров. Роторные компрессоры, как правило, имеют довольно большие размеры и располагаются в верхней части двигателя. Они популярны в автомобилях дрэгстеров и роддеров, поскольку зачастую выступают за габариты капотов. Тем не менее, они являются наименее эффективными компрессорами по двум причинам:
  • Они существенно увеличивают вес транспортного средства.
  • Они создают дискретный прерывистый воздушный поток, а не сглаженный и непрерывный.
 Двухвинтовой компрессор Двухвинтовой компрессор работает, проталкивая воздух через два ротора, напоминающих набор червячных передач. Как и в роторном компрессоре, воздух внутри двухвинтового компрессора оказывается в полостях между лопастями роторов. Но двухвинтовой компрессор сжимает воздух внутри корпуса роторов. Это происходит за счет того, что роторы имеют коническую форму, при этом воздушные карманы уменьшаются в размерах по мере продвижения воздуха из стороны наполнения в напорную сторону. Воздушные полости сжимаются, и воздух выдавливается в меньшее пространство.  Рис.3 Двухвинтовой компрессор   Это делает двухвинтовой компрессор более эффективным, но они стоят дороже, потому что винтовые роторы требуют дополнительной точности в ходе процесса производства. Некоторые типы двухвинтовых компрессоров располагаются над двигателем, подобно роторному компрессору типа Roots. Они также порождают много шума. Сжатый воздух на выходе из компрессора издает сильный свист, который следует приглушить с помощью специальных методов поглощения шума.  Центробежный компрессор Центробежный компрессор – это крыльчатка, напоминающая собой ротор, которая вращается с очень высокой скоростью и нагнетает воздух в небольшой корпус компрессора. Скорость вращения крыльчатки может достигать 50,000-60,000 оборотов в минуту. Воздух, попадающий в центральную часть крыльчатки, под действием центробежной силы увлекается к ее краю. Воздух покидает крыльчатку с высокой скоростью, но под низким давлением. Диффузор – множество стационарно расположенных вокруг крыльчатки лопаток, которое преобразует высокоскоростной поток воздуха с низким давлением в поток воздуха с малой скоростью, но высоким давлением. Скорость молекул воздуха, встретивших на своем пути лопатки диффузора, уменьшается, что влечет за собой увеличение давления воздуха.  

Рис.4  Центробежный компрессор

  Центробежные компрессоры являются наиболее эффективными и самым распространенными устройствами из всех систем принудительного повышения давления. Они компактные, легкие и устанавливаются на передней части двигателя, а не сверху. Они также издают характерный свист по мере роста количества оборотов двигателя, способный заставить случайных прохожих на улице поворачивать головы в сторону вашего автомобиля. Monte Carlo и Mini-Cooper S – два автомобиля, которые доступны в версиях с компрессором. Любой из рассмотренных выше типов компрессоров может быть добавлен к транспортному средству как дополнительная опция. Несколько компаний предлагают комплекты, состоящие из всех необходимых частей для собственноручного дооснащения автомобилей компрессорами. Такие доработки также являются неотъемлемой частью культуры «машин для фана» (смешных машинок) и автомобилей из мира спорта «Fuel Racing». Некоторые производители даже включают компрессоры в оснащение своих серийных моделей автомобилей. Далее мы узнаем обо всех преимуществах компрессора, установленного в ваш автомобиль.  Преимущества компрессора Самое главное преимущество компрессора – это увеличение мощности двигателя, измеряемой в лошадиных силах. Добавьте компрессор к любому обычному автомобилю или грузовику, и он станет вести себя как автомобиль с двигателем большего внутреннего объема или просто как с более мощным двигателем. Но как узнать, какой из нагнетателей выбрать – механический компрессор или турбокомпрессор? Этот вопрос горячо обсуждался авто инженерами и энтузиастами, но, в целом, механические компрессоры имеют несколько преимуществ над турбокомпрессорами. Механические компрессоры лишены такого недостатка как лага (отставания) двигателя – термина, используемого для описания времени, прошедшего с момента нажатия водителем педали газа до момента ответа двигателя на это внешнее воздействие. Турбокомпрессоры, к сожалению, подвержены явлению отставания, постольку поскольку требуется некоторое время, прежде чем выхлопные газы достигнут скорости, достаточной для полноценного раскручивания крыльчатки турбины. Механические компрессоры не имеют такого лага, так как они приводятся в действие непосредственно от коленчатого вала двигателя. Одни компрессоры наиболее эффективны при работе в диапазоне низких скоростей вращения коленчатого вала, в то время как другие раскрывают весь свой потенциал лишь на высоких оборотах. Например, роторный и двухвинтовой компрессоры обеспечивают большую мощность на низких оборотах. Центробежные компрессоры, которые становятся все более эффективными по мере роста скорости вращения крыльчатки, обеспечивают большую мощность в диапазоне высоких оборотов. Установка турбокомпрессора требует обширной переделки выпускной системы двигателя, в том время как механические компрессоры могут быть легко привинчены к передней части двигателя или сверху. Это делает их дешевле в установке и проще в эксплуатации и обслуживании. Наконец, при использовании компрессора не требуется никакой специальной процедуры остановки двигателя. Это обусловлено тем, что они не смазываются моторным маслом и могут быть остановлены привычным образом. Турбокомпрессоры должны отработать на холостом ходу 30 секунд и более для того, чтобы дать возможность моторному маслу остыть. С учетом сказанного, для компрессоров имеет важное значение предварительный прогрев, так как они работают наиболее эффективно при нормальной рабочей температуре двигателя. Компрессоры являются характерной составляющей частью двигателей внутреннего сгорания самолетов. Это имеет смысл, если учесть, что самолеты проводят большую часть своего времени на больших высотах, где значительно меньше кислорода доступно для сгорания. Внедрение компрессоров позволило самолетам летать на большей высоте без снижения производительности двигателя. Компрессоры, установленные на авиационные двигатели, работают на основе тех же самых принципов, которые заложены в конструкцию автомобильных компрессоров. Компрессоры получают энергию непосредственно от вала двигателя и способствуют подаче в камеру сгорания смеси, находящейся под давлением. Далее рассмотрим некоторые недостатки компрессоров.  Недостатки компрессоров Самый большой недостаток компрессоров является также и их определяющей характеристикой: постольку поскольку компрессор приводится в движение коленчатым валом двигателя, он отнимает несколько лошадиных сил у двигателя. Компрессор может потреблять до 20 процентов общей выходной мощностью двигателя. Но так как компрессор способен прибавить до 46 процентов мощности, большинство автолюбителей склоняется к тому, что игра стоит свеч. Компрессор дает дополнительную нагрузку на двигатель, который должен быть достаточно прочным, чтобы выдерживать дополнительный импульс и более сильные взрывы в камере сгорания. Большинство производителей учитывают это и создают усиленные узлы для двигателей, предназначенных для работы в паре с компрессором. Это в свою очередь удорожает автомобиль. Компрессоры также дороже в обслуживании, а большинство производителей предлагают использовать высокооктановое горючее премиум класса. Несмотря на свои недостатки, нагнетатели по-прежнему являются наиболее экономически эффективным способом увеличения количества лошадиных сил. Компрессор может дать от 50 до 100 процентов увеличения мощности, что делает его находкой для гоночных автомобилей, автомобилей, перевозящих тяжелые грузы, а также для водителей, желающих получить от вождения своего автомобиля новую порцию острых ощущений.     Источник: http://auto.howstuffworks.com/supercharger1.htm

www.exist.ru


Смотрите также

.